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Ficure 6.—Relative cumulative distribution of the absolute deviation of the
computed hydraulic head from the prototype water level for the principal aquifer
within the Lancaster subbasin.

basin is intended to represent temporal changes of water levels in the
basin. The input to the model is natural recharge of ground water
(which was presumed to be the same as the natural recharge that was
used in the steady-state model), pumpage of ground water, irrigation
return, and the reduction of natural discharge. The output from the
model is the change of hydraulic head with time in the principal and
deep aquifers. The calibration problem for this model was the modifi-
cation of prior estimates of the storage coefficient of the aquifers.

PUMPAGE

In Antelope Valley the use of ground water for agricultural pur-
poses began in about 1880, when it was discovered that wells drilled
in the lower part of the valley yielded flowing water in quantities
sufficient for irrigation (Thompson, 1929). In 1891 more than 100
wells were in use, but by that time only a few wells were flowing (R. dJ.
Henton, as cited in Wright, 1924). Drilling of large numbers of wells
began shortly before 1920 (Wright, 1924). Data presented by Snyder
(1955) indicate a rapid increase in the number of wells immediately
after that date; hence, it seems that the effective beginning of
ground-water use in Antelope Valley is 1915.
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20 ANTELOPE VALLEY GROUND-WATER BASIN, CALIFORNIA

As the number of wells in Antelope Valley increased, the quantity
of water discharged by wells also increased. In 1924 about 55,000
acre-ft (68 hm?) of water was pumped. By 1930 the annual pumpage
had increased to 170,000 acre-ft (210 hm?) (Snyder, 1955). During the
period of economic depression following 1930, pumpage declined until
in 1933 the annual pumpage was about 95,000 acre-ft (117 hm?3).
After 1933, pumpage again increased until about 1950, when the
annual pumpage reached the highest value of about 300,000 acre-ft
(400 hm?3) (Snyder, 1955; California State Water Resources Control
Board, 1974). Declining water levels resulted in uneconomically high
pumping lifts in some parts of Antelope Valley, and pumpage again
declined after 1950. In 1972 the annual pumpage was about 200,000
acre-ft (200 hm3) (K. W. Mido, California Department of Water Re-
sources, written commun., 1973). -

Long-term changes in the pumping rate usually correspond to
changes in the acreage under irrigation in Antelope Valley. An in-
crease in pumpage usually means that new land has been brought
under irrigation; a decrease in pumpage means that land has been
removed from irrigation. At the time of the highest pumping rate,
about 70,000 acres (28,000 ha) of land were under irrigation (Snyder,
1955). At that time the irrigated land in Antelope Valley was mostly
in the Lancaster subbasin. About two-thirds of the irrigated land was
in the eastern part of the subbasin, and the remaining irrigated land
was in the western part. The central part of the Lancaster subbasin
has not been extensively irrigated.

On the basis of data presented by California Department of Water
Resources (1947; K. W. Mido, written commun., 1973), the geographic
distribution of irrigated land and of pumpage (pl. 10) in Antelope
Valley remained generally unchanged from 1915 through 1961, al-
though local changes in both did occur. After about 1961 the geo-
graphic distribution of irrigated land changed. The centroid of irri-
gated land in the eastern part of the Lancaster subbasin moved about
10 mi (16 km) south of its former position, and the centroid of irri-
gated land in the western part of the subbasin moved about 10 mi
(16 km) north of its former position. These shifts in the geographic
distribution of irrigated land were related in part to the decline of
ground-water levels in the Lancaster subbasin; irrigation was aban-
doned where pumping lifts became uneconomically high.

Snyder (1955), California Department of Water Resources (K. W.
Mido, written commun., 1973), California State Water Resources
Control Board (1974), and Antelope Valley-East Kern Water Agency
(W. G. Spinarski, written commun., 1976) have estimated the annual
pumpage in Antelope Valley for periods ranging from 1 to 28 years
(fig. 7). The estimates of pumpage that were made by these different
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FiGure 7.—Previous estimates of the temporal distribution of pumpage. Curve A is the
estimate by Snyder (1955). Curve B is the estimate by California State Water Re-
sources Control Board (1974). Curve C is the estimate by California Department of
Water Resources (K. W. Mido, written commun., 1973). Curve D is the estimate by
Antelope Valley-East Kern Water Agency (W. G. Spinarski, written commun.,
1976).

investigators do not agree where the periods covered by the estimates
are coincident. For example, Snyder (1955) estimated that the annual
pumpage in 1950 was 362,000 acre-ft (446 hm3), and California State
Water Resources Control Board (1974) reported this pumpage to be
285,000 acre-ft (351 hm3).

The data shown in figure 7 are only estimates of the true pumpage,
and individual data points would be expected to deviate from the true
pumpage. If, however, the pumpage used in the calibration of the
transient-state model deviates from the true value, the estimates of
the storage-coefficient values obtained from the calibration most
likely will also deviate from the true values. Thus, it becomes impor-
tant to devise a method that will allow estimation of the pumpage as
accurately as possible.

A commonly used method for improving estimates of a quantity is
to average several estimates. This average is, as are the original
estimates on which it is based, only an approximation of the true
value. The probable deviation of the average from the true value,
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22 ANTELOPE VALLEY GROUND-WATER BASIN, CALIFORNIA

however, will generally be smaller than the probable deviation of any
one of the original estimates from the true value.

The pumpage curve A in figure 8 represents an average of the
pumpage data shown in figure 7. This curve was constructed by giv-
ing approximately equal weight to the curves A, B, C, and D in figure
7 (curve D was extrapolated backward in time parallel to general
trend of curves B and C until it intersected curve A). Other estimates
of the true pumpage can be obtained by giving unequal weight to the
available data. Curve B in figure 8 represents an unequally weighted
average of the data in figure 7. For this average, little weight was
given to curve D because of the short time interval covered by the
estimate.

By giving different weights to the available data, pumpage esti-
mates within a continuous range can be developed. The weights used
in the development of curves A and B in figure 8 represent two rea-
sonable interpretations of the pumpage data, and other pumpage data
were not considered. The problem remains, however, to choose which
of these pumpages to use in the calibration of the model. A discussion
of this is held until later.
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FiGUrRe 8.—Alternative temporal distributions of pumpage for possible use in the
mathematical model. Curve A is the average of all data shown in figure 7. Curve B is
the average of curves A, B, and C in figure 7.
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TRANSIENT-STATE MODEL 23
IRRIGATION RETURN

When land is being irrigated, water in excess of the moisture re-
quirement of crops is applied to control the salt level in the root zone.
The question arises as to the fate of water that gets below the root
zone. If part of the applied water percolates downward until it reaches
the zone of saturation, it becomes available for reuse.

A necessary input to the model is the quantity of water returned to
the zone of saturation. Estimates of irrigation return are necessarily
linked with estimates of pumpage, which was discussed in the previ-
ous section. Snyder (1955) estimated that in Antelope Valley about 70
percent of the applied water is actually consumed by the crop or
otherwise lost and that the mean annual application of water to the
irrigated lands is about 6 ft (1.8 m). Correspondingly, the mean an-
nual percolation past the root zone is about 2 ft (0.6 m). This percolate
moves generally downward through the unsaturated zone toward the
water table. Two separate lines of evidence, however, suggest that by
about 1955 most of this water had not reached the water table.

The first line of evidence involves a consideration of the historical
trend of the dissolved-solids concentration in water below the water
table. If the irrigation-return percolate, which has a dissolved-solids
concentration of about 700 mg/l (milligrams per liter) (R. E. Lewis,
written commun., 1976), is mixing with water below the water table,
which from 1908 through 1955 had a concentration of about 250 mg/1
(Johnson, 1911; Koehler, 1966; Moyle, 1965), the concentration below
the water table probably should have increased with time. For 1908
through 1955, however, a general increase in dissolved-solids con-
centration was not observed (fig. 9), which tends to support the as-
sumption that by 1955 the irrigation-return percolate had not
reached the water table. During the 1960’s the concentration did
increase, suggesting that during that period the percolate began to
mix with ground water.

The second line of evidence involves the existence of perched
ground-water bodies. The presence of perched ground water in An-
telope Valley is indicated by falling water in some wells. The de-
velopment of perched ground-water bodies indicates the presence of
subsurface geologic conditions that retard the downward movement
of the irrigation-return percolate. Thus, the perched ground-water
bodies provide the mechanism for the retention of irrigation-return
percolate above the water table.

The evidence supporting the assumption that most of the percolate
was retained above the water table during the model calibration
period, 1915 through 1961, is not conclusive, and significant uncer-
tainty exists as to the true state of the prototype. The resolution of
this uncertainty is discussed in the following section.
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TRANSIENT-STATE MODEL 25
SELECTION OF NET PUMPAGE FOR MODEL CALIBRATION

The pumpage that is actually input to the model is the net pump-
age, which is the quantity of water extracted from wells minus the
quantity of irrigation return that reaches the water table. Significant
uncertainty exists regarding both of these quantities, and a possible
consequence of using the wrong net pumpage in the model calibration
is storage-coefficient values that deviate from the true values. The
following section describes the decision process used to select, from a
limited number of alternatives, the net pumpage that probabilisti-
cally is nearest to the true net pumpage.

If the true state of the prototype were known, the consequence of
using a given net pumpage could be determined. Under uncertainty,
however, the consequence cannot be determined simply because the
state of the prototype is not known for certain, and thus it is neces-
sary to use the concept of expected value. The expected value of the
consequences of a decision is the weighted sum of the consequences of
the decision for the various states of nature. The weights are the
probabilities that a particular state is realized in the prototype. For
each net pumpage it is possible to compute the expected consequence,
and the best decision is the decision with the smallest expected con-
sequence. An index of the consequence of using a particular net
pumpage is the deviation of the pumpage from the true pumpage. The
best pumpage to use, then, is the one for which the expected value of
the deviation is the least.

The possible pumpages are defined as P1 and P2, which symboli-
cally represent pumpage curves A and B in figure 8. The possible
irrigation returns are defined as R: and R2, which represent full
irrigation return to the water table and no irrigation return. Thus,
there are four possible joint states of the ground-water basin; P1 can
occur with either R1 or R2, and Pz also can occur with either R1 or Ra.
For 1950 through 1961 the net pumpages P1R1 (where P1R1 symboli-
cally represents the joint occurrence of P1 and R1) and P2R2 are about

. equivalent because P equals about 1.4 P2. P1 and P2 are assumed to
‘be equally likely true states of the prototype. Similarly, R: and Rz are
;assumed to be equally likely true states of the prototype. It follows, if
the pumpage and irrigation states occur independently, the joint oc-
currence of any of the possible combinations of pumpage and irriga-
tion return is equal to one-fourth.

A way of presenting decisionmaking problems involves the use of
tree diagrams. In figure 10 a tree diagram for the selection of the net
pumpage to use in the calibration of the model is presented. The point
at the left-hand node of the diagram represents the initial position,
and the four branches of the tree emanating from that point represent
the four decisions in the problem. Thus, the left-hand fork is called a
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26 ANTELOPE VALLEY GROUND-WATER BASIN, CALIFORNIA
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Ficure 10.—Decision tree showing selection of net pump-
age for calibration of transient-state model.

decision fork. At the end of each of the four branches representing the
possible decisions, there is another fork with four branches. These
four branches represent the possible states of the ground-water basin,
and these forks are called state forks.
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TRANSIENT-STATE MODEL 27

The numbers on the state branches are the probabilities of the
states. The numbers on the right-hand side of the tree diagram are
the relative deviations of the assumed net pumpage from the true net
pumpage under the realization of a particular state. For example, if
the decision is taken to use net pumpage P1R: in the model calibra-
tion, but the true state of the prototype is net pumpage PiRz, the
consequence is the deviation of assumed pumpage from the actual
pumpage by the relative amount 0.4. The numbers at the state forks
are the expected values of the deviation.

At the decision fork, the net pumpages PiR1 and P2R2 have the
lowest expected deviation. Pumpage P1R: represents pumpage curve
A in figure 8 combined with an irrigation return equal to 30 percent
of the pumpage. Pumpage P2R2 represents pumpage curve B in figure
8 combined with no irrigation return.

The above analysis applies only for 1950 through 1961. The results
of a similar analysis for 1915 through 1949 indicate that all the net
pumpages have equal expected deviations. If the probability of no
irrigation return during 1915 through 1949 is greater than one-half,
however, which would be a reasonable assumption given the assump-
tion of equal likelihood for 1950 through 1961, the decision analysis
indicates that net pumpages P1R2 and P2R2 (which are similar net
pumpages because curves A and B in figure 8 coincide for much of the
period 1915 through 1949) produce the smallest expected deviation of
the assumed pumpage from the true pumpage.

The equal likelihood for all possible states was assumed in the
analysis. P2 is probably a more likely state of the prototype than Pi,
however. Likewise, Rz is probably a more likely state than R1. The
revision of the analysis with probabilities reflecting these subjective
evaluations clearly indicates the use of net pumpage P2R2 in the
calibration of the transient-state model. This net pumpage was in fact
used.

REDUCTION OF NATURAL DISCHARGE

Natural discharge of ground water by evapotranspiration is
greatest if the water table is near the land surface. If the position of
the water table moves downward, the rate of natural discharge is
suppressed. If the water table moves beyond the reach of roots of
plants, natural discharge by evapotranspiration will become
insignificant.

Pumping from the Antelope Valley ground-water basin has caused
lowering of the water table and, consequently, the suppression of
natural discharge. Field data are not available on the effects of
water-level declines on the level of natural discharge, but operation of
the model indicates that this discharge may have ceased in about
1950 (fig. 11). The mass balance for the Antelope Valley ground-
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Ficure 11.—Reduction of evapotranspiration computed by the mathematical
model.

water basin indicates that the annual discharge of ground water by
evapotranspiration may have been about 39,400 acre-ft (48.5 hm3) in
1915.

Theoretical research on the discharge of ground water by evapo-
transpiration has been restricted to determining the annual use of
water by different plant species when the depth to the water table
does not change greatly with time. Very little is known about the
quantitative effects of large temporal changes in the depth to the
water table. Prediction of changes in the use of ground water is dif-
ficult because roots of established plants may, to a limited extent,
keep pace with a declining water table, especially if the depth to the
water table increases slowly. This phenomenon has not been quan-
tified by researchers, however. Therefore, its possible occurrence was
ignored in the construction of the model. The relation shown in figure
3 was assumed to relate temporal changes in evapotranspiration dis-
charge to temporal changes in the depth to the water table, even
though the relation shown in figure 3 actually applies only to the case
of a time-invariant depth to the water table.

CALIBRATION OF THE TRANSIENT-STATE MODEL
The transient-state model was calibrated to the prototype water
levels for 1961. Hydraulic heads that were computed for 1915 by the

mathematical model were used as initial conditions, and the model
simulated changes in hydraulic heads for 1915 through 1961. For
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TRANSIENT-STATE MODEL 29

operation of the model, this period was divided into 235 time steps,
each of 73 days. The pumpage for a given year (fig. 7) was assumed to
be distributed uniformly throughout the year.

Even though a large number of water-level observations are avail-
able (Dutcher and others, 1962; Moyle, 1965; Koehler, 1966), accurate
potentiometric maps of the principal and deep aquifers cannot be
constructed from field data. Intraaquifer confining members occur in
both the principal and deep aquifers (a condition that was not consid-
ered in the conceptual model), and differential pumping from between
these members has caused the development of vertical hydraulic-
head differentials within the aquifers. Head differentials of as much
as 80 ft (24 m) in places occur over a vertical interval as small as 400
ft (120 m). In the principal aquifer, the heads in shallow wells are
typically higher than heads in deeper wells; however, in some areas
this situation is reversed. Consequently, the indicated head at a point
in the potentiometric map (pl. 3) is intended to represent the average
head over the saturated thickness of the aquifer at that point.

The calibration procedure was started by making initial estimates
of the storage coefficient of the principal and deep aquifers. Using
lithologic logs for wells, geologic data, and laboratory tests of similar
deposits, Bloyd (1967) estimated the storage coefficient of the princi-
pal aquifer and of the deep aquifer for areas where the deep aquifer is
unconfined. For the applicable areas these estimates were used as
initial estimates of the storage coefficient in the calibration proce-
dure. In the area where the deep aquifer is confined, the storage
coefficient of the deep aquifer was estimated by using the rule of
thumb that the ratio of the storage coefficient to the aquifer thickness
is about 1078 per foot (3x107® per meter) (Lohman, 1972). The aver-
age thickness of the aquifer in the confined area is about 1,000 ft
(300 m), and a storage coefficient of 0.001 for this area was used in the
model.

The transmissivity of the principal and deep aquifers and the verti-
cal hydraulic conductivity of the lacustrine deposits were obtained
from the calibration of the steady-state model and were used in the
transient-state model. These parameters were invariant during the
calibration of the transient-state model; hence, the objective of this
calibration was to fit the transient-state model to the prototype water
levels by adjusting the storage coefficient. Only the storage coeffi-
cients of the principal aquifer and of the deep aquifer where it is
unconfined were adjusted during the calibration.

Plates 11 and 12 show the final storage coefficients for the principal
and deep aquifers. The storage coefficients do not deviate signifi-
cantly from the initial estimates (fig. 4).

Hydrographs of computed hydraulic heads and measured water
levels in the principal aquifer are shown in figures 12 and 13. The
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Ficure 12.—Hydrographs of computed hydraulic heads in the principal aquifer at
node 144 and measured water levels in well 8N/13W-11Q1. Water-level mea-
surements are from Moyle (1965).

hydraulic heads were computed by the mathematical model using the
storage-coefficient distributions given on plates 11 and 12 and the
transmissivity distributions given on plates 7 and 8. Plate 13 shows
the geographic variation of hydraulic heads in the principal and deep
aquifers that were computed by the mathematical model. The general
shape of the computed solution compares well with the potentiometric
map of the nrototype water levels shown on plate 3; however, the
areas of low hydraulic head that are associated with areas of concen-
trated pumpage are more disperse in the computed solution than
those observed in the prototype. Considering all areas of the
ground-water basin, the area-weighted median absolute deviation of
the computed hydraulic heads from the prototype water levels was 25
ft (7.6 m) (fig. 5).

DESCRIPTION OF MODELING ERRORS

SOURCES OF ERROR

The observed deviation of the computed hydraulic heads from the
prototype water levels is the result of errors associated with the con-
ceptual model, the computational scheme, the system parameters, the
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FicURE 13.—Hydrographs of computed hydraulic heads in the principal aquifer at
node 248 and measured water levels in well 7N/11W-28E1. Water-level mea-
surements are from Koehler (1966).

input data, the initial conditions, and the prototype water levels.
Table 2 gives a subjective assessment of the relative importance of
these sources of error in explaining the observed deviations.

TABLE 2.—Importance of various possible sources of the deviation of
the computed water levels from the prototype water levels

Relative Importance

Source of error

Steady-state model Transient-state model
Conceptual model _.______________ Low Intermediate
Computational scheme ____________ Low Low
System parameters ___ Low Low
Inputdata . . _____ Intermediate High
Initial conditions _____ None Intermediate
Prototype water levels ____________ High High

Conceptual model

The errors associated with the conceptual model are errors that
result mainly from the simplifying assumptions used in the concep-
tualization of the prototype. Although errors of conceptualization are
probably not large compared to other errors in the model, these errors
result mostly from the assumption that intraaquifer ground-water
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32 ANTELOPE VALLEY GROUND-WATER BASIN, CALIFORNIA

flow is strictly horizontal and that the transmissivity of the principal
aquifer is time invariant.

Computational scheme

Errors associated with the computational scheme are errors result-
ing from the numerical approximation of the solution to the govern-
ing equations. The numerical solution converges to the true solution
as the elements are reduced to zero area (Hutton and Anderson,
1971). The use of elements with nonzero area results in the departure
of the numerical solution from the true solution, especially where
large changes in hydraulic-head gradients are involved. The compu-
tation scheme is not a serious source of error in the model, however.

System parameters

The system parameters consist of the transmissivity and storage
coefficient of the principal and deep aquifers and the vertical hy-
draulic conductivity of the lacustrine deposits. Prior estimates of
these parameters are refined during the calibration of the model. The
objective of the calibration is to identify parameter values that
minimize the deviation of the computed hydraulic heads from the
measured water levels while keeping the parameter values within
physically reasonable limits. It is difficult to recognize when
minimum-deviation parameter values have been found, however, and
the calibration procedure is usually terminated prematurely. The
presumption always remains that, if additional calibration runs had
been made, perhaps the fit of the model to the prototype water levels
could have been improved.

In using the model to make predictions of the response of the pro-
totype to specified inputs, errors associated with the system parame-
ters result from the deviation of the system parameters from their
true values. Relatively small adjustments were made to the system
parameters during the calibration of the steady-state and transient-
state models. A consistency exists between estimates of the system
parameters obtained from field data and estimates obtained from the
calibration procedures. Consequently, the probability that the system
parameters used in the model are close to the true parameters is
greater than if that consistency did not exist.

Nevertheless, uncertainty as to the actual pumpage and irrigation
return creates a corresponding uncertainty as to the adequacy of the
storage-coefficient values obtained from the calibration of the
transient-state model. Although not previously discussed, the actual
natural recharge to the ground-water basin is known uncertainly,
which creates uncertainty as to the adequacy of the transmissivity -
values obtained from the calibration of the steady-state model.
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If different estimates of the state of the prototype had been used in
the calibration, different estimates of the system parameters proba-
bly would have been obtained. Figures 14 and 15 show the effects that
changes in the system parameters would have on the predictions of
hydraulic head that are made with the model. Figure 14 shows the
effects on the computed hydraulic heads of relative changes in the
storage-coefficient values. The measure of the effect on the computed
hydraulic heads is the relative deviation of the computed changes in
hydraulic heads at the end of a 20-year simulation period. The
maximum and the median deviation are indicated in figure 14. Cor-
respondingly, figure 15 shows the effects on computed hydraulic
heads of relative changes in the transmissivity values.

The maximum relative deviation is quite sensitive to changes in
the system parameters. The maximum relative deviation, however, is

4 T T T T T T T T T 1 ri 11

MAXIMUM OR MEDIAN RELATIVE DEVIATION OF HYDRAULIC HEAD

0.5 1.0 1.5 2.0

RELATIVE STORAGE-COEFFICIENT VALUES

FicURrE 14.—Sensitivity of computed hydraulic heads to changes in
the storage-coefficient values used in the model.
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Fi1cURE 15.—Sensitivity of computed hydraulic heads to changes in the
transmissivity values used in the model.

generally associated with areas that have smaller head changes. The
median deviation is less sensitive to changes in the system parame-
ters than is the maximum deviation. This is especially true for
changes in transmissivity.

Input data

Errors associated with the input data are errors that result from
the estimation of natural recharge, natural discharge, pumpage, and
irrigation return. Techniques used to obtain these estimates typically
bias the estimates, and the bias is for the most part transferred to the
system parameters during the calibration process. This may be a
relatively important error source.

Initial conditions

Operation of the transient-state model requires specification of ini-
tial hydraulic heads. Errors in the initial hydraulic heads produce
errors in the computed hydraulic heads. In general, however, these
errors become less important as the duration of the period of simula-
tion increases.

Prototype water levels

Errors associated with the prototype water levels are errors of mea-
surement, sampling, and interpretation. The largest errors of mea-
surement probably result from locating wells incorrectly and thereby
incorrectly estimating the altitude of the land surface at the well
from topographic maps. Some water-level measurements may not be
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representative of the aquifer. Measurement of water levels in wells
that are being affected by local pumping or in wells tapping perched
water bodies, for example, will not be representative of aquifer condi-
tions. These are sampling errors. Interpretation errors arise where
field data are contoured or extrapolated to areas without any data.
Prototype water levels probably are a serious error source.

ERRORS OF PREDICTION

The predictive accuracy of the model, when measured in terms of
the deviation of the computed hydraulic heads from the prototype
water levels, is directly proportional to the magnitude and duration of
pumping. The greater the pumpage or the longer the duration of
pumping, the greater will be the probable errors in computed hy-
draulic heads. If the future magnitude and duration of pumping are
similar to those used in the calibration of the transient-state model,
the deviation of the computed hydraulic heads from the prototype
water levels that were obtained from the calibration of the transient-
state model is probably indicative of the predictive accuracy of the
model. It may be possible, however, to improve the predictive accu-
racy of the model by selective use.

Consider three questions that can be asked about model predic-
tions:

1. What will be the future pumpage and what will be the response
of the prototype to that pumpage?

2. What will be the response of the prototype to any specified
pumpage?

3. What will be the differential response of the prototype to two
specified pumpages that are defined to be mutually exclusive?

The answer to the first question will contain errors that result from
errors in the conceptual model, errors in the system parameters,
errors in the initial conditions, and errors in the pumpage. The ans-
wer to the second question, however, will not contain errors resulting
from errors in the pumpage. The third question eliminates initial
conditions from consideration, and the answer to this question will
not contain errors that result from either pumpage or initial
conditions.

The elimination of pumpage errors from the second question will
improve the probable accuracy of the answer to this question relative
to the accuracy of the answer to the first question. The additional
elimination of initial-condition errors from the third question will
improve the probable accuracy of the answer to this question relative
to the accuracy of the answers to both the first and second questions.
Therefore, the best predictions are made with the model for interro-
gations involving the differential response of the prototype.
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NUMERICAL SOLUTION OF THE
GROUND-WATER EQUATIONS
THE GALERKIN-FINITE ELEMENT CONCEPT

To solve numerically the governing equations of ground-water flow,

the solution is expressed by a fifiite number of parameters. Secondly,
we transform the equations of ground-water flow into expressions

Ficure 16.—Finite-element discretization scheme used in the mathematical model.
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relating these parameters. If the equations are linear, then the rela-
tions among the parameters expressing the solution are also linear,
that is, we are led to a linear system of algebraic equations. In this
process we cannot avoid dealing with a large system of equations. To
ameliorate this situation, it is necessary to choose the parameters in
such a way that the resulting coefficient matrix is sparse. One method
reflecting this feature is the Galerkin-finite element method.

The Galerkin-finite element method was applied to the analysis of
single-aquifer ground-water systems by Pinder and Frind (1972). Ex-
tension of the Galerkin-finite element method to the analysis of two-
aquifer ground-water systems follows. Development of the solution
scheme for this system follows the development presented by Pinder
and Frind (1972). The difference between their approach and the ap-
proach used here results from the selection of a different element
shape and the application of the method to a two-aquifer system.

The fundamental idea of the Galerkin-finite element method is to
replace a continuous function by values of the function that are
specified at a finite number of discrete points called nodes. Function
values between these points are calculated using piecewise continu-
ous interpolating functions defined over a finite numbe: of subdo-
mains called elements.

Consider a two-aquifer ground-water system. The first aquifer in-
cludes the domain (), which is surrounded by the boundary I'. The
second aquifer includes the domain ()', which is surrounded by the
boundary I''. The subdivision of this system into triangular elements
is shown schematically in figure 16. The domains ) and Q' are not
everywhere coincident; however, in the areas where these domains
are coincident, the elements are also coincident, that is, the nodes i, J,
and k respectively have the same locations in the x-y plane as the
nodes p, q, and r. The discussion that follows is based in part on the
above characteristics of the layout of nodes and elements.

GALERKIN APPROXIMATION

Let us define the linear operators L and L’ as
_ 0 gtk L0 (poh N\ _ o oh
=5 ("a ) *s ("o ) ~Sa

- W - % (h=h") =0 (5)

and
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8 oh'N\ 9 oh' b’
wy= & (1 +9 (7Y _g
Ly = (T&x (}y ( o ) at

—w - %(h’—h) -0, 6)

where x, y are cartesian coordinates,

T is the transmissivity of the first aquifer,

S is the storage coefficient of the first aquifer,

W is the flux of a source or sink in the first aquifer,

h is the head in the first aquifer,

K is the vertical hydraulic conductivity of the confining layer,

b is the thickness of the confining layer,

T' is the transmissivity of the second aquifer,

S’ is the storage coefficient of the second aquifer,

W' is the flux of a source or sink in the second aquifer, and

h’ is the head in the second aquifer.

Equations 5 and 6 are to be solved in domains (2 and ', which are

enclosed by the boundaries I' and I''. The boundary conditions are

P donT e
on
and
o =0onl’, (8)
on

where d/6n is the outward-pointing normal derivative on I and I"'.

To solve L(h)=0 and L’(h')=0, we assume trial solutions of the
forms

n
h(xy,t)=h(x,y,t)= .21 Cit)¢;(x,y) 9)
1=
and

nl
By, )=h'(x,y,t)= .21 C' ()" ix,y), (10)
l=
where h and A’ are series approximations to 2 and A'; ¢i and ¢'i are
linearly independent trial functions defined over the domains ) and
Q' and are chosen beforehand. C; and C’; are undetermined coeffi-
cients, and n and n’' are the number of nodal points.

The Galerkin-finite element approximation to equation 5 only will
be considered. (It will be shown later how the simultaneous solution
to both equations 5 and 6 can be obtained.)

The series approximation to equation 5 will provide an exact repre-
sentation as n approaches infinity (Forray, 1968, p. 191). For a finite
series, the approximation will not exactly satisfy equation 5, and
there will be a residual R. The residual is defined by
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n
R(x,y,t)=L[ _ 21 Ci®dilx,y) | (11)
L:

If the trial solution were the exact solution, the residual would van-
ish. We attempt to force this residual to zero, in an average sense,
through our selection of the undetermined coefficients C;.

The C: are calculated by setting the weighted integrals of the re-
siduals to zero. In the Galerkin method (Galerkin, 1915), trial func-
tions are used as weighting functions, that is,

[[ 2 C,(t)dg(x,y)] ¢;(c,y)dxdy = 0. (12)

i=1,2,..,n
From equation 12 we obtain n linear equations, which can be solved
for the n values of C;.

First, equation 12 can be simplified. By expanding equation 12 we
obtain

0 n 0
ff (T— 21Cj¢j ) +5 T%; '2 Cjtbj —Sgt‘ 2 dey

Jj=1 Jj=1

- (h’ 5 C,qb,) didxdy = 0. (13)
b o

1=1,2,..,n
The quantity h’, which occurs in the leakage term of equation 13, can

be replaced by the trial solution for h’'. By making this substitution
into equation 13 we obtain

ff[%; (% jilqdy) +§§ (T% jiq@)_s(;—tjgl Cidy
Q

K n' n
-W - = 3 Clhidi— 3 Cidi )|ddxdy = 0. (14)
»( 2 0m 3) ;%)]

i=12,...,n

Equation 14 can be integrated by parts. By assuming transmissiv-
ity to be constant over each element and recalling that Cj is a function

of time only, we obtain from integration by parts of equation 11 (Pin-
der and Frind, 1972)
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P
n 5b: b - 5. od: K
[j§1( gl £1 * gd)l 5% ¥ ‘3¢id§,')dexdy *

quSl E ¢J —L dxdy +fj¢,dedy J’J‘QSL b 2 C';didxdy —
n

f f s 198 car - o, (15)
J=1

I

1=1,2,..,n

where d/0n is the outward-pointing normal derivative on the bound-
ary. Recall that this derivative is everywhere defined to equal zero
(eq. 7); therefore, the term containing this derivative vanishes.

The n equations of equation 15 can be written in matrix form as

Clalc} + B &} + Dife'} + {F} = o, (16)

P P>

where [A] and [B] are nxXn dimensional matrices; [D] is an nxn' di-
mensional matrix; {C}, {dC/dt}, and {F} are n dimensional vectors;
and {C'} is an n’ dimensional vector. Using terminology from struc-
tural engineering, [A] is called the stiffness matrix, [B] is called the
dynamic matrix, and {F} is called the force vector. The matrix [D] will
be called the leakage matrix.

Typical elements of [A], [B], [D], and {F} are

JJ(T6¢‘ I ‘;’;" ‘3;;’1 + £ ¢,¢>,)dxdy (17)
B; = fjs‘bid’jdxdy (18)
Q
.
Dy = —f i %dxdy (19)
0
: _
F, = || &:Wdxdy. (20)
QJ
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TRIAL FUNCTIONS

In order to generate the set of algebraic equations represented by
equation 16, it is necessary to perform integrations of the trial func-

tions of the form
0, 99,
J] ; : dxdy

S ¢; didxdy
and

j d),-dxdy.

The suitability of the Galerkin approximation for computer applica-
tion depends on the selection of the trial functions, such that the
computational effort for the integrations is minimized.

To facilitate these integrations, the trial functions are defined
piecewise in the element sense to obtain global trial functions in the
domain (). Within an element the approximate solution (equation 9)
can be expressed as

B(x,y) =

i

Cito ¢ (x,9), (21)
1

I ™ w

where f represents local trial functions that are defined only within
the element e.

The local trial functions used in this study are linear and are de-
fined on triangular elements. The trial functions are defined such
that of are nonzero only over element e, equal to unity at the node i,
and equal to zero at all other nodes. These functions for the node i (fig.
17) are given by

1
! (x,y) =54 [ —y)x + (G —x)y + (xiyp —xey))]

for (x,y)in element e; otherwise,

wf (5y) =0, (22)

where A represents the area of the element. Subscripts i, j, k refer to
the vertices of the triangular element, and the subscripts progress in
counterclockwise order around the element. The area of the element
is given by
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Node k
(xk» Yk

Node j
(xj» ¥j)

Ficure 17.—Local trial function used in the mathematical model.

x; ¥ 1
A= = | 1
= 9 XjiJj
% n 1 (23)

The global trial function ¢; is the union of those values of w¢ that
are found to be nonzero at node i. Thus, the global trial functions are
given by

¢,ay) = 0lUw2U ..U ot, (24)

where {w},w%, ver o]i} is the set of all local trial functions that are
nonzero at the node i.

An examination of equation 15 indicates that about 4n? integra-
tions are required. Because the integrals have nonzero values only
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where two trial functions share the same element, the number of
integrations that actually must be evaluated is much smaller.

INTEGRATION OF THE APPROXIMATING EQUATION

The integrations in equations 17, 18, 19, and 20 are most easily
performed on an element basis. Element matrices are generated, and
the information is then transferred to the global matrix. Because
there are three nodes in an element, each element matrix will be of
order three.

Stiffness matrix.
A typical element stiffness matrix [a] will be of the form

o X & X & o
ow, ow ow, Ow ow., Ow
=T —27"1 =2 72 T Y3 dxd
la] ,[[ o & o o kx|
dwzdw, OJwzdw, Jwzdwg

EE R

ré_wla_wl 0w, 0w, Jdw; dw,

dy dy dy dy dy o
ow, dw ow, dw 0w, dw

+ T —2—1 —2-—2 228 | dydy

[[ d dy dy 9y dy oy

Qf‘_’s @91 @9_’3 (9_(02 %’3 8_(03

EEX RN

K W W  Ww; W
+ B ﬂ W W3 W3 | dxdy. (25)
W3, gy W3y

Aquifer parameters that appear in the stiffness matrix are assumed
to be constant over an element. Because the integration is performed
over an element, these parameters are moved from under the integra-
tion. The indices used in the element stiffness matrix are local, and
they pertain to nodes numbered counterclockwise around the
triangle.

The integrations in equation 25 are performed in the global coordi-
nate system. The following integration formulas are used:

dw; 0w, 1
f & an DY = T 0ra1yrad) 03 (26)

r=1ijk
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1
ff 9o, ‘*"fd dy = 3 Crag=%,01) @4 —2) 27)

r=1i,j,k

ﬂ w;w; dxdy = _615 A (28)
1

. . 29

ﬂ w;w, dxdy 12A, (29)

r=j,k

where x; and y; are the coordinates of the node i.

The global stiffness matrix is obtained by summing, for a given
global node, the contribution to that node from each element stiffness
matrix. For example, if nodes i and j in the element nodal system
correspond to nodes p and q in the global nodal system, the a;; in the
element stiffness matrix is added to A,, in the global stiffness matrix.
This operational procedure is repeated for each node in an element
and for all elements in the domain ().

Dynamic matrix.
A typical element dynamic matrix [b] will be of the form

WwW; Wy W0y
[b]=Sﬂ. Wpw; Wawy Wywg | dxdy. (30)

Wz GGy Wyl

The integrals are evaluated using equations 28 and 29, and the global
dynamic matrix is assembled according to the operation procedure
described previously.

Leakage matrix.
A typical element leakage matrix [d] will be of the form

Wy Wy (g
[d] = [[ we wzwz wowg | dxdy. (31)
W3 10-10) Wg g

As we did for the element dynamic matrix, the integrals in the ele-
ment leakage matrix are evaluated using equations 28 and 29; how-
ever, the assembly of the global leakage matrix is somewhat differ-
ent. The form of the leakage term arose in part from the introduction
of the trial solution for the head in the second aquifer (eq. 10) into
equation 13. If nodes i and j in the element nodal system not only
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correspond to nodes p and q in the global nodal system for the first
aquifer but also correspond to nodes k£ and m in the global nodal
system for the second aquifer, then a; in the element leakage matrix
is added to Dy,, in the global leakage matrix.

Force vector.

The flux term in the force vector arises because of point sources and
sinks and because of distributed sinks. Recharge and pumpage are
represented mathematically by point sources and sinks. Evapotrans-
piration discharge is represented mathematically by distributed
sinks. Accordingly, the force vector can be expanded to include these

flux terms separately. From the expansion, equation 20 is modified to
obtain

ff (b 2 QkS(x - XpY — yk)dXdy +f d)lEdXdy, (32)

where
@, is the point volumetric recharge to or pumpage from the
aquifer,
xr and y;, are the coordmates of the location of the point source or
sink,
d is the Dirac delta function,
m is the number of point sources and sinks, and
E is the volumetric evapotranspiration discharge per unit area.
Because of the properties of the Dirac delta function (Korn and
Korn, 1961, p. 876), the integral

m
[fi k§1 QLo — x,,y — y,)dxdy
Q

is equal to @, if x, and y, are the coordinates of a node. The global
force vector is assembled by simply adding €, to F;, where @, is
located at the node .

Distributed sinks are handled somewhat differently. The discharge
per unit area is given by the relations

Ex, y)=E, z2<0

E,z(x,y)
Ex, y)=E, — ozz(:cy for 0z < z, (33)
Ex, y)=0 for z> z,,
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where
E is the volumetric discharge per unit area,
E, is the discharge when the water table is at the land surface,
z is the depth below the land surface to the water table, and
2, is the depth at which discharge ceases.
The function E can be approximated by using trial functions to

interpolate nodal values over an element. The function E is replaced
by the series

n
E@xy = 2 Ej¢ixy),
J=1

where E; is the value of E at the node j. The integral

I d:Edxdy
¢)
is then replaced by the integral

n
/jdh 2 Ejdydxdy.
j=1

Q

This integral is best evaluated on an element basis. A typical ele-
ment force vector {f} will be of the form

Wy W0y W W3 E,

I} = W0y Wy wouwy | dxdy {E, (34)
WeWy WeW, U Ey

The integrations in equation 34 are evaluated by using equations 28

and 29. If node i in the element nodal system corresponds to node p in

the global nodal system, then the global force vector is assembled by
adding f; in the element force vector to F, in the global force vector.

FINITE-DIFFERENCE APPROXIMATION OF THE TIME DERIVATIVE

Although the matrices [A], [B], and [D] and the vector {F'} can now

be evaluated, we must still solve the set of ordinary differential equa-
tions

[A(C) + wl{‘;—f}+ D)C'} + {F} = o. (16)
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To do this we approximate the time derivative by using the first-order
correct, implicit, finite-difference scheme

ANCoa} + 5 BHCis—C} +DHCun} + {F} =0, 35)
Equation 35 can be rearranged to obtain
([A“/l?t [B]) (Croa} +DNCon} = BHC} - F). 36)

Equation 36 applies to the first aquifer. The parallel expression for
the second aquifer is

QA’HZ—, lB']){C'M} + D'HCad= 35 BUCY - {F'}. G

ASSEMBLY OF THE TWO-AQUIFER SOLUTION

The simultaneous solution of equations 36 and 37 for {C,, ,,} and
{C',, o} can be obtained by first assembling the matrix equation

1+ D Xea) = 5 DHXY - (¥}, @9)
where
(4] D] ]
m =
D114
B] 0 |
[Y] =
|0 [B']]
) = ;{Ct}g
ey
{Ct+At}
s+ {52
e (Croa)
{F}
(v} =
{F}

Equation 38 can then be solved for {X,,,}, which can be easily
decomposed into {C,,,} and {C';ia}.
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RECURRENCE ALGORITHM

To bring together the concepts outlined up to this point, the solu-
tion scheme for obtaining heads in the two-aquifer system at discrete
points in space and time will be presented in a stepwise fashion.

Step 1.—Evaluate [A), [B], [D], [A'], [B'], and [D’'] and assemble {[I1]
and [Y].

Step 2.—Assign the initial heads to {X,}.

Step 3.—Evaluate

1
(1] + A (Y}

Step 4.—Evaluate {F} and {F'} and assemble {¥}. The evapo-
transpiration discharge (eq. 33) depends on the head in the aquifer.
Because this discharge is nonlinearly related to the head, equation 38
is also nonlinear. To maintain the linearity of this equation, we can
devise a numerical scheme wherein the evapotranspiration discharge
is obtained by extrapolating head values from earlier known time
levels to the current, unknown, level. An extrapolation based on the
latest two calculated heads provides satisfactory results. Notice, how-
ever, that we solve this nonlinear system of equations only approxi-
mately when using this quasi-linearization procedure.

Step 5.—Evaluate the vector

S0 {X} - {w}

Step 6.—Solve equation 38 for {X,, .} by the point iterative succes-
sive over-relaxation method (Varga, 1962). {X,, .} then can be easily
decomposed into {C,, ,} and {C, , .} Consequently, the previously
undetermined coefficients in the trial solutions

n
hyt)= 3 C, @),y 9)
i=1
and
nl
h' @yt) = 2 CLi)d'(xy) (10)
i=1

are now known, and these solutions can be used to approximate the
continuous distribution of heads in the aquifers. Recall that the trial
functions were defined such that they are unity at the node for which
they are defined and they are zero at every other node. Because of
these characteristics of the trial functions, the trial solutions reduce
at the nodal locations to
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h(xy, yt) = Cy(2) (39)

and
h'(x'y, 3t = C @), (40)

where x;, and y, are the coordinates of node % in the first aquifer and
x;y andy, are the coordinates of node k in the second aquifer. At the
nodal locations, heads in the aquifers are the coefficients C, and C;.

Step 7.—Replace {X,} with {X,, ,}.

Step 8.—Add At to the elapsed time. Then, if At has been changed,
return to step 3; otherwise return to step 4.

The above cycle is repeated until the desired period of simulation is
covered.

SUMMARY

The Antelope Valley ground-water basin, which has a surface area
of 900 mi2 (2,300 km?) and a thickness of as much as 5,000 ft (1,500
m), consists of two alluvial aquifers separated by fine-grained lacus-
trine deposits that are as much as 400 ft (120 m) thick. Natural
recharge to the ground-water basin occurs mostly by the infiltration
of streamflow. The average annual recharge is 40,700 acre-ft (50.2
hms3). Before the extensive use of ground water for agriculture, the
ground-water system was in equilibrium, and the recharge equaled
the discharge, which occurred mainly by evapotranspiration.

Extensive pumping of ground water has caused the suppression of
evapotranspiration of ground water, and pumping is presently the
principal means of discharge from the ground-water basin. During
the last 50 years, pumping of ground water in excess of natural re-
charge has resulted in the decline of water levels as much as 200 ft
(61 m). Cumulative pumpage for the period before 1973 is about 10
million acre-ft (12,000 hm3).

Part of the applied irrigation water is consumed by the crop, and
part percolates below the root zone. A large part of the cumulative
percolate may be stored in the unsaturated zone, and the recharge of
the zone of saturation by irrigation return may have been small
through the end of the calibration period, 1961.

A mathematical model of the ground-water basin was developed on
the basis of a simplified conceptualization of the ground-water sys-
tem. The model was calibrated by comparing the computed hydraulic
heads with the corresponding prototype water levels for both steady-
state and transient-state conditions. For the steady-state model, the
area-weighted median absolute deviation of computed hydraulic
heads from the prototype water levels was 12 ft (3.7 m). For the
transient-state model, the median deviation was 25 ft (7.6 m).

The data used to calibrate the model contained errors. These errors
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in part caused the observed deviation of the computed hydraulic
heads from the prototype water levels. The errors contained both
systematic and random components. In general, the systematic errors
were probably transferred to the parameters during the calibration
procedure.

Predictions made with the model will be in error because of the
transfer of data errors to the aquifer parameters during the calibra-
tion. The predictions will also contain errors that can be related to the
initial conditions and assumed future pumpage. If these three types of
errors are present, the median error of water-level prediction will
probably be about the same as obtained from calibration of the
transient-state model, or about 25 ft (7.6m), if a similar magnitude
and duration of pumping are considered.

Prediction errors due to initial conditions and the assumed pump-
age can be eliminated if the model interrogation is designed to pre-
dict the differential response of the prototype to different pumpage
characteristics. If the model is interrogated in this manner, the me-
dian error of prediction will probably be substantially less than 25 ft
(7.6 m).
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