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Numerical Simulation of Ground-Water Flow and Land
Subsidence at Edwards Air Force Base, Antelope Valley,

California

By Tracy Nishikawa, Diane L. Rewis, and Peter Martin

ABSTRACT

Edwards Air Force Base (EAFB) in
southern California historically has relied on
ground water for its water-supply needs. Pumping
of ground water at the base has led to problems
such as declining water levels and land
subsidence. For this study, a MODFLOW-based
ground-water flow model was developed for
EAFB to estimate the effects of pumping and
injection strategies on water levels and on land
subsidence.

The ground-water flow model grid has
154 rows and 126 columns of 660- by 660-foot
cells, and the boundary of the active model grid
basically corresponds to bedrock outcrops. The
model has seven layers of varying thickness;
model] layers 2, 3, and 4 correspond to a thick clay
layer in the southern half of the model area and
model layer 5 corresponds to the middle aquifer
which is the primary source of water supply for
EAFB. The mode! was calibrated using a trial-and-
error approach. Because relatively little ground-
water development took place prior to the
establishment of EAFB in 1947, assumed
(predevelopment) steady-state conditions for
model calibration were represented by a
compilation of data from 1913-46. The steady-
state simulated hydraulic gradient was northward
for all model layers. The transient-state 1996
simulated hydraulic heads indicate that a ground-
water divide is located near the middle of the basin
and that south of the divide ground water flows
southward and north of the divide ground water

flows northward. There are two subsidence centers
located in the vicinity of the two primary pumping
centers on the base. The maximum simulated
hydraulic head change was about 150 feet and the
maximum simulated subsidence was about 5 feet.
The simulated results indicate that the greatest
amount of compaction occurs in the middle
aquifer (model layer 5). The simulated water
budget rates for 1947, 1961, and 1996 indicate that
about 97, 98, and 76 percent, respectively, of the
net discharge was derived from storage.

Results of the sensitivity analysis indicate
that the model was sensitive to changes in the
hydraulic-characteristic values of Faults 1 and 4
and the hydraulic conductivity values and inelastic
storage values in layer 5. Specifically, increasing
or decreasing the hydraulic-characteristic value of
Fault 1 by an order of magnitude affected
simulated hydraulic heads by as much as 45.0 feet
and simulated subsidence by as much as 0.5 foot.
Decreasing the hydraulic-characteristic value of
Fault 4 by an order of magnitude affected
simulated hydraulic heads by as much as 10.0 feet
and simulated subsidence by as much as 0.5 foot.
Decreasing the hydraulic conductivity values for
layer 5 by 50 percent affected simulated hydraulic
heads by as much as 10.0 feet and simulated
subsidence by as much as 0.8 foot, and decreasing
the inelastic storage values for layer 5 by an order
of magnitude affected simulated hydraulic heads
by as much as 45.0 feet and simulated subsidence
by as much as 10.0 feet.

Abstract 1
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The simulated hydraulic head and
subsidence results were not sensitive to vertical
conductance in areas 2 and 4; however, the results
indicate that the clay layers in area 4 hydraulically
control water levels and subsidence in these areas.
When the vertical conductance was varied in area
2, the resulting simulated hydraulic heads and
subsidence showed little change in either area;
however, when the vertical conductance was
varied in area 4, simulated hydraulic heads and
simulated subsidence were affected in both areas.

Three water-management scenarios were
tested for Edwards Air Force Base: for scenario 1
(base case), 1997 pumping rates were maintained
for 10 years (1997-2006); for scenario 2, water
was injected steadily into the middle aquifer at
well 8N/10W-1C2 in the South Tract well field
between December and February, concurrent with
base-case pumping; and for scenario 3, water was
injected steadily into the middle aquifer at well
9N/10W-24E3 in the South Base well field,
concurrent with base-case pumping. For scenarios
2 and 3, two separate cases were simulated; in the
first case, about 3 acre-feet per day of water was
injected, and in the second case about 30 acre-feet
per day of water was injected. Injecting 3 acre-feet
per day had little effect on simulated hydraulic
heads; however, injecting 30 acre-feet per day
raised simulated hydraulic heads more than
100.0 feet for both scenarios. In general, the
injection of 3 acre-feet per day of water had little
or no effect on the total subsidence over the
10-year simulation. Subsidence still accumulated
with time when 30 acre-feet per day was injected
at either site, but at a much lower rate than when
3 acre-feet per day was injected. Simulated
subsidence decreased 60 percent more at the S-5
production well when 30 acre-feet per day of water
was injected at well 8N/10W-1C2 than when
3 acre-feet per day was injected, and simulated
subsidence decreased 90 percent more at the South
Base well field when 30 acre-feet per day of water
was injected at well 9N/10W-24E3 than when
3 acre-feet per day was injected.

INTRODUCTION

Edwards Air Force Base (EAFB) (fig. 1)
historically has relied on ground water for its water-
supply needs. Pumping of ground water at the base hag

led to declining:watertlevels [about 90 ft between
1950-96 (Londquist and others, 1993; Carison and

others, 1998)] and land subsidence [more than 3.5 f

_between 1926292 (Ikehara and Phillips, 1994)]. Land

subsidence at EAFB has caused surface deformation of
its runways, sink-like depressions, earth fissures,
erosion of the Rogers Lake playa, and collapsed
production-well casings. In 1992, EAFB began

- purchasing: 1mponed gﬁater from the ‘Antelope Valley-
+ EastiKern Water Agency (AVEK) to reduce

. dependence N groun% water at the base. To address the
" concerns of EAFB on the use of ground water as an

emergency water source during drought years without
exacerbating the land subsidence problem, methods are
needed to evaluate and project ground-water and
subsidence conditions that may result from current and
planned ground-water pumping at EAFB.

Purpose and Scope

In 1988, the U.S. Geological Survey (USGS), in
cooperation with the Department of the Air Force,
began investigations of the effects of land subsidence
and declining ground-water levels at EAFB. Data
collected during these investigations were obtained by
leveling and global positioning surveys, surface and
borehole geophysical surveys, and ground-water-level
and sediment compaction monitoring. These data
indicated that the regional ground-water levels
declined more than 90 ft between 1950 and 1996
(Londquist and others, 1993) and that as much as 3.5 ft
of subsidence occurred between 1926 and 1992,
affecting areas surrounding the production wells at the
base (lkehara and Phillips, 1994).

The purpose of this current study is to define the |

geohydrology of the ground-water flow system,
emphasizing the effects of pumping or recharge, or
both, on the ground-water flow system and on land
subsidence. As part of this study, a numerical ground-
water flow model was developed using the U.S.
Geological Survey modular ground-water flow model,
MODFLOW (McDonald and Harbaugh, 1988), to

estimate the effects of pumping and injection strategies '
on water levels and on land subsidence. The model was

2 Numerical Simulation of Ground-Water Flow and Land Subsidence at Edwards Air Force Base, Antelope Valley, California
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areas and was discharged by evapotranspiration
(39,400 acre-ft/yr), subsurface discharge into Fremont
valley (1,000 acre-ft/yr), and springs (300 acre-ft/yr)
(Durbin, 1978).

Under predevelopment conditions inflow must
equal outflow; therefore, to estimate the rate of steady-
state ground-water inflow into the study area one may
consider the two components of subsurface
outflow—subsurface outflow into Fremont Valley and
ground water discharged as evapotranspiration. Durbin
(1978) estimated that the subsurface outflow was about
1,000 acre-ft/yr. In order to estimate the amount of
ground-water discharge by evapotranspiration in the
study area, aerial photographs of EAFB taken in 1972
were analyzed; approximately 650 acres of
phreatophytes were identified having an areal density
of 11 to 40 percent. In 1998, there were approximately
277 acres of mesquite on EAFB (Ric Williams, Mojave
Desert Ecosystem Program, written commun., 2000).
Because some development (and mesquite removal)
had occurred by 1972, the use of 650 acres to estimate
evapotranspiration may result in underestimates of
ground-water discharge from this sink; hence 650 acres
is conservative for estimating total predevelopment
inflow to the basin. Lines and Bilhorn (1996) estimated
that the average annual water use of mesquite at an
areal density of 11 to 40 percent is 0.6 ft/yr in the
Mojave River Basin. Assuming that the results of the
study by Lines and Bilbhorn (1996) are relevant to the
EAFB area, the resulting average annual loss of ground
water by evapotranspiration is approximately 390 acre-
ft/yr. This implies that the total inflow into the study
area under predevelopment conditions was about
1,390 acre-ft/yr.

At EAFB, a small amount of runoff may
recharge the subbasins along the base of the
surrounding low-lying hills and through the coarse-
grained sediments of the intermittent stream channels
in the eastern and northwestern parts of the base and in
the North Muroc subbasin. This recharge is probably
small because average annual precipitation is low (less
than 5 in./yr), average annual pan evaporation is high
[about 114 in./yr (Bloyd, 1967)], and the surrounding
low-lying hills are not of sufficient elevation to produce
orographic effects. Some direct recharge to the aquifer
system from storm runoff has been observed; Rewis
(1995) stated that when storm runoff inundates the
playas, it can infiltrate into the subsurface through
desiccation cracks and linear and polygonal fissures in

the playa surface. The volume of this recharge is
difficult to estimate, but it is assumed small because the
vertical pathways of the cracks and fissures become
plugged with low permeability sediments washed in
from the surface (Rewis, 1995). Rewis (1995) also
stated that most of the water that reaches the playa
probably evaporates.

Ground-Water Development

Ground-water use in the Antelope Valley began
in the 1880°s with only a few widely scattered shallow,
small-diameter wells (Thompson, 1929; Snyder, 1955).
Drilling of large-diameter wells did not begin until
about 1915; most of the wells were drilled in the
southern and central part of the valley. As the number
of wells in the Antelope Valley increased, the total
pumpage volume increased from about 55,000 acre-ft
in 1924 to a high of about 300,000 acre-ft in 1950
(Snyder, 1955). Only a minimal amount of this
pumpage occurred in the EAFB area north of the
Willow Springs Fault prior to 1947 and the
establishment of EAFB.

Before the establishment of EAFB,
homesteaders in the area around Rogers Lake generally
used shallow wells for domestic and livestock water
supplies. The wells ranged from 50 to 300 ft deep
(Thompson, 1929; Dutcher and others, 1962). In the
area around what is now the Graham Ranch well field
(fig. 2), alfalfa fields were irrigated from wells that
ranged from about 300 to 700 ft deep. In 1913, the
Atchison, Topeka and Santa Fe Railway at Muroc
Station, which was located at what is now the main
base complex of EAFB, began using ground water
from a well 218 ft deep. The Muroc Army Air Base,
which was established on the northeast part of Rogers
Lake in 1942, was supplied with ground water from
wells that ranged from about 140 to 200 ft deep. After
the establishment of EAFB in 1947, most of these wells
were abandoned but not destroyed, except for a short
time when a few of the wells were used at the military
facilities while new well fields were developed in the
Main Base, South Base, and North Base areas.
Eventually well fields also were developed in the South
Tract and Air Force Research Laboratory (formerly
known as Phillips Laboratory) areas.

Records of pumpage for EAFB have been kept
since the base was established in 1947 and were
summarized by Londquist and others (1993). Total
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pumpage increased steadily from about 790 acre-ft in
1947 to a high of about 7,500 acre-ft in 1965 (fig. 4).
Pumpage data for 1968 to 1975 were not available for
the Graham Ranch, Branch Park, Air Force Research
Laboratory, and South Base well fields and, therefore,
pumpage for this period was estimated by linearly
interpolating between the measured 1967 and 1976
pumpage data for each well field. From 1976 to

1990, total annual pumpage ranged from 5,000 to
7,000 acre-ft/yr. From 1991 to 1996, total annual
pumpage ranged from about 3,600 to 5,200 acre-ft/yr
(MSgt. Frazier S. Speaks, Jr., Chief of Ultilities
Systems, Edwards Air Force Base, written commun.,
1998). Figure 5 shows annual pumpage for each well
field at EAFB and for the water-supply districts in the
North Muroc subbasin (John Siefke, Mine Department,
U.S. Borax Inc., written commun., 1997).

Ground-Water Levels and Movement

Ground-water data for 1915 and 1961 (Durbin,
1978) and 1996 (Carlson and others, 1998) were used
for this current study to describe ground-water
movement in the study area. For the purposes of the

current study, we assumed that ground-water levels
prior to 1947 represent predevelopment conditions
because the major development of ground-water
resources in the study area took place after 1947. In
1915, ground-water levels in the middle and lower
aquifers [the deep aquifer as defined by Durbin (1978))
were about 2,300 to 2,380 ft above sea level south of
the Willow Springs Fault, about 2,280 ft above sea level
(9 ft above the lakebed surface of Rogers Lake) in the
southern part of Rogers Lake, and about 2,200 ft above
sea level in the North Muroc subbasin (Durbin, 1978,
plate 2). The hydraulic gradient was about 0.001 to the
north, indicating that ground-water movement was
from the southern boundary of the study area to the
north.

The 1961 ground-water levels represent
conditions after 15 years of ground-water pumping at
EAFB. In 1961, ground-water levels in the upper
aquifer were about 2,260 ft above sea level in well
8N/10W-8R3 in the southern part of the study area,
about 2,255 ft above sea level in well 8N/OW-6D1 in
the southern part of Rogers Lake, and about 2,210 ft
above sea level in well 11N/9W-36R1 in the North
Muroc subbasin (fig. 6). In 1961, the ground-water
levels in the middle and the lower aquifers ranged from
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Figure 4. Annual pumpage at Edwards Air Force Base, Antelope Valley, California, 1947-96. Because pumpage data
for 1967 through 1975, indicated by the dark shading, were not available, values for individual well fields (see figure 5}
were estimated by linearly interpolating between the measured pumpage data for 1967 and 1976.
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vels about 2,240 to 2,280 ft above sea level in the southern and lower aquifers was from the southern boundary of
ns part of Rogers Lake (Durbin, 1978, plate 3), and was the study area to the north. The 1961 ground-water-
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7. In Rogers Lake (Durbin, 1978, plate 3) and about 2,210 ft a pumping depression in the South Base well field; the
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Figure 5. Annual pumpage from the well fields at Edwards Air Force Base and from production wells in the North Muroc subbasin,
Antelope Valley, California, 1947-96. See figure 2 for location of well fields.

Geohydrology 11

PWS-0206-0011




the central part of the Lancaster subbasin (Durbin,
1978). -

The 1996 ground-water levels represent
conditions after 50 years of ground-water pumping at
EAFB. In 1996, ground-water levels in the upper
aquifer in the southern part of the study area were about
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2,245 ft above sea level (Carlson and others, 1998).
Ground-water levels in the middle and lower aquifers
were about 2,228 ft above sea level in the southern part
of the study area south of the Willow Springs Fault,
about 2,165 ft above sea level in the southern part of the

study area north of the Willow Springs Fault, about
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Figure 6. Water levels at selected wells of the Antelope Valley—East Kern Water Agency at Edwards Air Force Base, Antelope Valley,
California. Numbers in parenthesis represent the row and column, respectively, of the model cell.
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1,190 ft above sea level in the middle of Rogers Lake,
and about 2,180 ft above sea level in the North Muroc
subbasin (Carlson and others, 1998). These data
indicate that in the middle and lower aqulfers south of
the basement-complex ridge at Rogers Lake, ground
water flows in a southward direction and north of the
pasement-complex ridge ground water flows in a
northward direction. These data also indicate that the
willow Springs Fault is a barrier to ground-water flow;
there is about a 70 ft water-level dlfference across the
fault. ;
Long-term hydrographs for selected wells in the
study area show that from 1960 to 1996 ground-water
ievels declined (fig. 6). In the upper aquifer of the
Lancaster subbasin, water levels in well 8N/9W-6D1
declined about 15 ft, and in the upper aquifer of the
North Muroc subbasin, water levels in wells 1 IN/OW-
[7N1 and 36R1 declined about 25 ft. In the upper
aquifer of the Lancaster subbasin in the southern part of
the study area south of the Willow Springs Fauit, water
levels in well 8N/10W-8R3 declined as much as 35 ft.
Water levels in the middle aquifer also declined during
this period: in the Lancaster subbasin, water levels in
well ON/10W-24C1 declined 50 ft, and in the North
Muroc subbasin, water levels in wells 11N/9W-24A1
and 11N/8W-29K ! declined about 40 ft.. Well-
construction data for these wells and the other wells
used in this study are presented in the appendlx
(tables A-1 and A-2). ‘

Land Subsidence

Land subsidence is a gradual settling or sudden
sinking of the Earth’s surface owing to subsurface
movement of earth materials. It is caused by natural
geologic processes, tectonic movements, or human
activities such as subsurface mining and oil or ground-
water pumping. Subsidence of the land surface in
Antelope Valley is related to the compaction of fine-
grained sediments resulting primarily from ground-
water withdrawals (Lofgren, 1965; Lewis and Miller,
1968). Compaction of fine-grained sediments in an
aquifer system caused by long-term pumping reduces
water pressure in an aquifer thereby increasing the
effective stress on the subsurface sedlments (Bear,
1979). :
In 1988, some effects of land sub‘sidence were
observed at EAFB with the occurrenceof surface
deformation features, such as sink-like depresmons and
giant linear and polygonal desiccation hssures on the

playa surface of Rogers Lake (Blodgett and Williams,
1992; Londquist and othefs, 1993). In 1989, an ,
extensometer and four monitoring wells were installed
by the USGS at a site, referred to as the Holly site,
south of the South Tract well field (fig. 2). A
monitoring program was established to record hourly
compaction and ground-water levels at the Holly site
and ground-water levels at seven other sites on EAFB
(Freeman, 1996). In 1991, a linear earth fissure about
3 to 6 ft wide and about 4,000 ft long opened across an
emergency runway on the playa surface near the south
end of Rogers Lake (Ward and others, 1993). Two
shallow extensometers were installed at the fissure,
referred to as the Fissure site, to monitor the
compaction of the playa clays and to determine the
cause of fissuring (Freeman, 1990) (fig. 2). Other
indications of land subsidence at EAFB include the
failure of production wells caused by collapsed well
casings and the protrusion of well casings, pump
platforms, and survey bench marks above land surface.

Londquist and others (1993) reported that land
subsidence greater than 1 ft affects more than 100 mi®
of EAFB. Ikehara and Phillips (1994) reported 3.3 ft of
subsidence at the Holly site and 3.7 ft of subsidence
near the South Tract well field (fig. 2).

. Dinehart and McPherson (1998) surveyed 31
separate third-order-accurate (12 mm X (distance {in
km])!"?) transects across Rogers Lake playa. Results
from their survey indicate a decrease in elevation of
about 3 ft on Rogers Lake between the El Mirage Fault
and the southern edge of the lakebed. This change in
elevation may have been caused by land subsidence in
that part of the lakebed.

GROUND-WATER FLOW MODEL

The objective of developing a numerical ground-
water flow model of the aquifer system at EAFB wasto
better understand the dynamics of ground-water flow
and land subsidence. The model is a tool that can
simulate the effect of ground-water pumping stresses
on ground-water levels and on compaction of the fine-
grained sediments, which causes surface deformation
and land subsidence. The model can be used to predict
the affects of ground-water management options on
controlling water-level declines and the resulting land
subsidence. The numerical model used for this current
study is the U.S. Geological Survey Modular Three-
Dimensional Finite-Difference Ground-Water Flow

Ground-Water Flow Model 13
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the accuracy of the input data used in the model
calibration and is inversely related to the magnitude of
the proposed changes in the stresses being applied to
the model as well as to the length of the simulation
horizon.

In this study, the model was calibrated using
manual trial-and-error techniques. Owing to the
complexity and unknowns of the system being
represented, it is worth noting that model construction
and calibration (formal or not) result in a non-unique
product and that model predictions are subject to
potentially large errors (Konikow and Bredehoeft,
1992). Automated approaches could be used in
subsequent studies to more formally characterize
uncertainties in the parameters and perhaps improve
the fit of the model to calibration data (Yeh, 1986).

The model for this study did not perform well in
the Graham Ranch area (inodel area 3); however, this
area is not important to EAFB in terms of water supply
nor has this area experienced land subsidence. If the
Graham Ranch area does become important to EAFB,
additional work will be required to lmprove the model
in this area.

Simulated hydraulic-head responses to pumping
show that faults strongly compartmentalize the ground-
water flow system. It is likely that there are additional
concealed faults crossing the study area that have not
yet been mapped in areas that are not being pumped. If
additional pumping occurs in these areas, then these
concealed faults may become apparent and may need to
be added to the model.

Predictive simulations shou‘ld not be made in
area 1 and in area 6 near the northern boundaries
because the use of time-varying specified head and
general-head boundaries provide unrealistic, infinite
sources of water. If predictive simulations are to be
made, refinement of these boundaries (probably within
the context of the regional flow model) will be
required.

An accurate transient-state s;mulatlon [initial
value problem (Bear, 1972)] requires the accurate
simulation of the initial conditions. Most of the
observed pre-development water levels were measured
in the upper aquifer (model layer 1); therefore, the
water levels in the aquitard (model layers 2 to 4),
middle (model layers 5 and 6), and lower aquifers
(model layer 7) were not well defined.

To better understand the ground-water flow
system and to improve the model, additional

i
i
i

information is required. Improved hydrogeological
characterization would allow corrections and
refinement of the model. Installation of new wells
perforated in different aquifers and clay layers would
provide depth-specific data that can be used to gain a
better understanding of the ground-water flow system.
If new wells are installed, they initially should be
installed in areas where the greatest pumping occurs
(areas 2, 4, and 8). Similarly, the installation of
additional extensometers, both shallow and deep,
would provide data needed to better understand
subsidence. The new extensometers, combined with
the existing extensometers, would yield subsidence
data from the individual aquifers (upper, middle, and
lower) and the older lacustrine deposits (fig. 3). A
formalized sensitivity study would help identify areas
of model weakness and guide expenditures of
observational resources (Nishikawa and Yeh, 1989).

CONCLUSIONS

A numerical ground-water flow model was
developed for Edwards Air Force Base in southem
California to model and help better understand ground-
water flow and land subsidence at the base. The model
has seven horizontal layers that correspond to the major
hydrogeologic units in the study area and incorporate
time-varying specified-head boundaries, no-flow
boundaries, faults, drains, evapotranspiration, and
interbed storage. The model was calibrated using a
trial-and-error approach during which simulated
hydraulic head and subsidence values were compared
with measured values for selected sites. In accordance
with previous studies, the simulated steady-state
gradient was northward and the simulated total cutflow
rate was about 990 acre-feet per year.

At the end of a 50-year simulation penod (1947~
96), the simulated hydraulic heads generally were
within 10 feet of the measured water levels and the
simulated subsidence at the Holly site was 3.3 feet,
which was comparable to measured subsidence values
in that area. Most of the simulated compaction
occurred in model layer 5. The 1996 transient-state
simulation produced two subsidence centers
corresponding to hydraulic-head depressions near the
South Base and South Tract pumping centers. By the
end of 1996, the hydraulic gradient was southward
south of the basement-complex ridge located in the
northern half of Rogers Lake and northward north of
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this ridge. The simulated water budget rates for 1947,
1961, and 1996 indicated that about 97, 98, and 76
percent, respectively, of the net dlscharge was derived
from storage.

The sensitivity analysis of the model, which
considered parameters specific to model areas 2 and 4,
indicated that the model was sensitive to changes in the
hydraulic-characteristic values of Faults 1 and 4 and in
the hydraulic-conductivity and inelastic-storage values
for layer 5. Specifically, increasing or decreasing the
hydraulic-characteristic value of Fault 1 by an order of
magnitude affected simulated hydraulic heads by as
much as 45 feet and simulated subsidence by as much
as 0.5 foot. Decreasing the hydraulic-characteristic
value of Fault 4 by an order of magnitude affected
simulated hydraulic heads by as much as 10 feet and
simulated subsidence by as much as 0.5 foot.
Decreasing the hydraulic-conductivity values for layer
5 by 50 percent affected simulated hydraulic heads by
as much as 10 feet and simulated subsidence by as
much as 0.8 foot. Decreasing the inelastic-storage
values for layer 5 by an order of magnitude affected
simulated hydraulic heads by as much as 45 feet and
simulated subsidence by as much as 10.0 feet.

Although simulated hydrauhc head and
subsidence were not sensitive to vertical conductance
(VCONT) in areas 2 and 4, the results indicated that the
clay layers in area 4 hydraulically control water levels
and subsidence in these areas. When VCONT was
varied in area 2, the resulting simulated hydraulic
heads and subsidence showed little change in either
area; however, when VCONT was varied in area 4,
simulated hydraulic heads and simulated subsidence
were affected in both areas. |

Three water-management scenarios were tested
for Edwards Air Force Base: for scenario 1 (base case),
1997 pumping rates were maintained for 10 years
(1997-2006); for scenario 2, water was injected
steadily into the middle aquifer at well SN/10W-1C2 in
the South Tract well field between December and
February, concurrent with base-case pumping; and for
scenario 3, water was injected steadily into the middle
aquifer at well 9N/10W-24E3 in the South Base well
field, concurrent with base-case pumping. For the
second and third scenarios, two separate cases were
simulated: in the first case about 3 acre-feet per day of
water was injected; in the second case about 30 acre-
feet per day of water was injected. Injecting 3 acre-feet
per day had little effect on simulated hydraulic heads;
however, injecting 30 acre-feet per day raised

]

simulated hydraulic heads more than 100 feet for both
scenarios. In general, injecting

3 acre-feet per day of water had little or no effect on the
total subsidence over the 10-year simulation.
Subsidence still accumulated with time when

30 acre-feet per day was injected at either site, but ata
much lower rate then when 3 acre-feet per day was
injected. Simulated subsidence decreased 60 percent
more at the S-5 production well when 30 acre-feet per
day of water was injected at well 8N/10W-1C2 then
when 3 acre-feet per day was injected, and simulated
subsidence decreased 90 percent more at the South
Base well field when 3Q acre-feet per day of water was
injected at well 9N/10W-24E3 than when 3 acre-feet
per day was injected.
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