TABLE 6.22003 ANNUAL DATASUPPLY WELL, SW1

TEST	ANNUAL MRP (PESTICIDES & PCBs)	UNIT	June	LIMIT
502	PP'-DDE	μg/l	< 0.01	
	PP'-DDD	$\mu g/l$	<0.01	┥ ┝━━━━
	PP'-DDT	$\mu g/l$	<0.01	┥ ┝───
	Alpha-BHC	μg/l	<0.01	┥ ┝
	Lindane (Gamma-BHC)	μ <u>g</u> /l	<0.01	0.2
	Heptachlor	μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμ	<0.01	0.01
	Heptachlor Epoxide	$\mu g/l$	<0.01	0.01
	Aldrin	μg/l μg/l	<0.01	0.01
	Dieldrin	μ <u>g</u> /l	<0.01	
	Endrin	μg/l	< 0.01	2
	Toxaphene	μ <u>g</u> /l	<0.5	$\frac{2}{3}$
	Aroclor 1242	μg/l	<0.1	⁻
520	Aroclor 1254	μg/l	< 0.05	
523	Beta-BHC	μg/l	< 0.01	
	Delta-BHC	μg/l	< 0.01	
	Endosulfan I	μg/l	< 0.01	
	Endosulfan II	μg/l	<0.01	1 h
	Endosulfan Sulfate	μg/l	<0.1	1
	Endrin Aldehyde	μg/l	< 0.01	·
	Aroclor 1016	μg/l	<0.1	0.5
	Aroclor 1221	μg/l	<0.1	0.5
	Aroclor 1232	μg/l	<0.1	0.5
	Aroclor 1248	μg/l	<0.1	0.5
	Aroclor 1260	μg/l	<0.1	0.5
540	Technical Chlordane	μg/l	<0.05	0.1
	ANNUAL MRP		·····	1
TEST	(VOLATILE ORGANICS)	UNIT	June	LIMIT
	Methylene Chloride	μg/l	<0.5	
	1,1,1-Trichloroethane	μg/l	<0.5	200
	Carbon Tetrachloride	μg/l	<0.5	0.5
	1,1-Dichloroethene	μg/l	<0.5	6
	Trichloroethylene	μg/l	<0.5	5
	Tetrachloroethylene	μg/l	<0.5	5
	Chlorobenzene	μg/l	<0.5	70
	Vinyl Chloride	μg/l μg/l	<0.5 <0.5	0.5
613	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l μg/l μg/l	<0.5 <0.5 <0.5	
613 614	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5	0.5 600
613 614 615	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 600 5
613 614 615 616	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane	μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 600 5 5
613 614 615 616 618	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane	μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 600 5 5 5
613 614 615 616 618 619	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	0.5 600 5 5
613 614 615 616 618 619 620	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane Benzene	μ <u>g</u> /l μ <u>g</u> /l	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	0.5 600 5 5 5 0.5 1
613 614 615 616 618 619 620 621	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene	μ <u>g</u> /l μ <u>g</u> /l	<0.5	0.5 600 5 5 5 0.5 1 150
613 614 615 616 618 619 620 621 624	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5	$ \begin{array}{r} 0.5 \\ 600 \\ 5 \\ 5 \\ 5 \\ 0.5 \\ 1 \\ 150 \\ 700 \\ \end{array} $
613 614 615 616 618 619 620 621 624 645	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene	μ <u>g</u> /l μ <u>g</u> /l	<0.5	0.5 600 5 5 5 0.5 1 150
613 614 615 616 618 619 620 621 624 645 646	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane	μ <u>g</u> /l μ <u>g</u> /l	<0.5	$ \begin{array}{r} 0.5 \\ 600 \\ 5 \\ 5 \\ 5 \\ 0.5 \\ 1 \\ 150 \\ 700 \\ \end{array} $
613 614 615 616 618 619 620 621 624 624 645 646 647	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5	0.5 600 5 5 5 0.5 1 150 700
613 614 615 616 618 619 620 621 624 645 646 647 648	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5	0.5 600 5 5 5 0.5 1 150 700
613 614 615 616 618 619 620 621 624 645 646 647 648 649	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5	0.5 600 5 5 5 5 0.5 1 150 700 10
613 614 615 616 618 619 620 621 624 645 646 647 648 649 650	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane	μg/l μg/l		0.5 600 5 5 5 0.5 1 150 700 10
613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene	<u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u>	<0.5	0.5 600 5 5 5 0.5 1 150 700 10
613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	<u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u>		0.5 600 5 5 5 0.5 1 150 700 10
613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651 652 653	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane	<u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u>	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $	0.5 600 5 5 5 0.5 1 150 700 10
613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651 652 653 654	Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	<u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u> <u>µg/l</u>		0.5 600 5 5 5 0.5 1 150 700 10

TABLE 6.2 2003 ANNUAL DATA SUPPLY WELL, SW1

TEST	ANNUAL MRP	UNIT	June	LIMIT
800	(BASE/NEUTRAL EXTRACTIBLES)			
	Acenaphthene Acenaphthylene	μ <u>g/l</u>	<1	·
	Anthracene	<u>μg/l</u>	<10	
	Benzidine	<u>μg/l</u>	<10	
	Benzo(a)anthracene	μg/l	<5	ا <u>ب ا</u>
the second s	Benzo(a)pyrene	μ <u>g</u> /l	<5	
	Benzo(b)fluoranthene	<u>μg/l</u>	<10	0.2
	1,12-Benzoperylene	μ <u>g</u> /l	<10	
	Benzo(k)fluoranthene	μg/l	<5	
	Bis(2-chloroethoxy)methane	μ <u>g</u> /l	<10	
	Bis(2-Chloroethyl)ether	μg/l	<5	
	Bis(2-chloroisopropyl)ether	μg/l	<1	
		μg/l	<2	
the second se	Bis(2-diethylhexyl)phthalate	μg/l	<5	4
	4-Bromophenyl Phenyl Ether	μg/1	<5	
	Butylbenzyl Phthalate	μg/l	<10	· ·
	2-Chloronaphthalene	μ <u>g/l</u>	<10	
	4-Chlorophenyl Phenyl Ether	μg/l	<5	
	Chrysene	µg/l	<10	
	1,2,5,6-Dibenzanthracene	μg/ <u> </u>	<10	
	1,2-Dichlorobenzene	µg/l	<2	
	1,3-Dichlorobenzene	µg/l	<1	
	1,4-Dichlorobenzene	μg/l	<1	
	3,3'-Dichlorobenzidine	µg/l	<5	
	Diethyl Phthalate	μg/l	<2	
	Dimethyl Phthalate	μg/l	<2	
825	Di-n-Butyl Phthalate	μg/l	<10	
	2,4-Dinitrotoluene	μg/l	<5	
	2,6-Dinitrotoluene	μg/l	<5	
	Di-n-Octyl Phthalate	μg/l	<10	
	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	μg/l	<1	
	Fluorene	μg/l	<10	
832	Hexachlorobenzene	μg/l	<1	1
833	Hexachlorobutadiene	μg/l	<1	
834	Hexachlorocyclopentadiene	μg/l	<5	50
835	Hexachloroethane	μg/l	<1	
836	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
	Isophorone	μg/l	<1	
	Naphthalene	μg/l	<1	
839	Nitrobenzene	μg/l	<1	
840	n-Nitrosodimethylamine	μg/l	<5	
	n-Nitrosodi-n-propylamine	μg/l	<5	
	Phenanthrene	μg/l	<5	
	Pyrene	μg/l	<10	
	2,3,7,8-TCDD	μg/l	< 0.000046	0.00003
	1,2,4-Trichlorobenzene	μg/l	<5	70
	n-Nitrosodiphenylamine	μg/l	<1	
TEST	ANNUAL MRP	UNIT	June	LIMIT
	(ACID EXTRACTIBLES)			
845	2-Chlorophenol	μg/l	<5	
847	2,4-Dichlorophenol	µg/l	<5	
848	2,4-Dimethylphenol	µg/l	<2	
	2,4-Dinitrophenol	μg/l	<5	
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-	μg/l	<5	
	2-Nitrophenol	μg/l	<10	
	A NUA subsect 1	μg/l	<10	
	4-Nitrophenol	μ <u>μ</u> μ <u>μ</u> μ		
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-	μg/l	<1	
853 854	4-Chloro-3-Methylphenol (4,6-Dinitro-o- Pentachlorophenol	μg/l μg/l	<1 <5	1
853 854 855	4-Chloro-3-Methylphenol (4,6-Dinitro-o-	μg/l	<1	1

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

....

TABLE 6.32003 SEMIANNUAL DATASUPPLY WELL, SW2

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	May	September	Mean	Max	Min	LIMIT
1S1	pH	0-14						
1S2	Temperature	°C						
1S3	Dissolved Oxygen	mg/l						
1S4	Electrical Conductivity	umhos/cm						1600
900	Depth to Groundwater	ft						
C15	Total Petroleum Hydrocarbons	μg/l	<50	<50	<50	<50	<50	
155	Total Dissolved Solids	mg/l	284	306	295	306	284	1000 ²
201	Ammonia	mg-N/l	<0.1	0.3	<0.2	< 0.3	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	0.3	<0.1	<0.2	0.3	<0.1	
204	Nitrate	mg-N/l	5.1	5.43	5.3	5.43	5.1	10 ³
205	Nitrite	mg-N/l	< 0.02	< 0.02	<0.02	<0.02	< 0.02	10 ³
257	Sulfate	mg/l	41	42	42	42	41	500 ⁴
301	Chloride	mg/l	35	38	37	38	35	500 ⁴
315	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	<500	<500	<500	<500	
602	Chloroform	μg/l	<0.5	<0.5	<0.5	<0.5	< 0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
610	Bromoform	μg/l	<0.5	<0.5	<0.5	< 0.5	<0.5	
723	Sodium	mg/l	27.1	20.1	23.6	27.1	20.1	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.4 2003 ANNUAL DATA SUPPLY WELL, SW2

TEST	ANNUAL MRP	UNIT	May	September	LIMIT
206	(MISCELLANEOUS) Total Cyanides		<5		200
312	Total Phenols	μg/l μg/l	<50	<11	200
TEST		UNIT	May	September	LIMIT
703	Calcium	mg/l	60.2	55.6	
704	Magnesium	mg/l	10.8	10.9	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.086		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	< 0.05		0.3
714	Lead	mg/l	< 0.002		
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	2.3	<10	
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.053		5
725	Antimony	mg/l	< 0.0005		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l			

TABLE 6.4 2003 ANUUAL DATA 2003 ANUUAL DATA

	\$`0>	/ฮิท	Methyl Tertiary Butyl Ether	799
		1/311	Acrylonitrile	559
	<5	[/ฮท	Acrolein	† \$9
<u> </u>	\$.0>	1/ฮิท	1,1,2,2-Tetrachloroethane	٤\$9
S. 0	<u>\$`0></u>	្រែភិព	Trans-1,3-Dichloropropene	259
\$.0	<u> </u>	[/ฮิท	Cis-1,3-Dichloropropene	159
Ş	\$.0>	(/ฮท	1,2-Dichloropropane	0\$9
	<u>\$`0></u>	[/3n	Chloromethane	679
	<u>\$`0></u>	[/ฮn	2-Chloroethylvinylether	879
	<u>\$`0></u>	<u>្រែងរា</u>	Chloroethane	279
01	<u>\$.0></u>		Bromomethane	979
01	<u>\$`0></u>	[/នn [/នn	Ethyl Benzene Trans-1,2-Dichloroethylene	\$79
002	<u>\$`0></u>	[/311	Toluene	¢79
051	<u>\$`0></u> <u>\$`0></u>	[/311	Benzene	179
\$`0	<u> </u>	<u>[/311</u>	1,2-Dichloroethane	079 619
S	<u>\$ 0></u>	[/an	1, 1, 2-Trichloroethane	819
S	<u> </u>	1/3ri	1,1-Dichloroethane	919
Ş	\$.0>	1/2m	p-Dichlorobenzene (1,4-Dichlorobenzene)	<u>519</u>
	<u> </u>	1/311	m-Dichlorobenzene (1,3-Dichlorobenzene)	\$19 \$19
009	<u> </u>	1/311	o-Dichlorobenzene (1,2-Dichlorobenzene)	£19
5.0	<u> </u>	<u>[/an</u>	Vinyl Chloride	Z19 Z19
04	<0.5	1/311	Chlorobenzene	119
ŝ	\$.0>	1/ฮท	Tetrachloroethylene	209
S	\$.0>	<u> /</u> 811		909
9	\$.0>		1,1-Dichloroethene	\$09
5.0	\$.0>	<u> /</u> ธก	Carbon Tetrachloride	709
007	\$`0>	1/ฮท	1,1,1-Trichloroethane	£09
	\$.0>	1/311	Methylene Chloride	109
LIMIT	ХвМ		(VOLATILE ORGANICS)	LOGIL
TIMII	A B A B A B A B A B A B A B A B A B A B	TINU	ANNUAL MRP	TEST
1.0	\$0.05	[/ฮท	Technical Chlordane	240
<u>\$.0</u>	110			
0.0	1.0>	(/ฮิท	Aroclor 1260	685
S .0	<u> </u>	(/ฮท	Aroclor 1248 Aroclor 1260	
č .0	<u> </u>	เ/ฮท เ/ฮท		685
<u>\$.0</u>	<0.1	្រភា ្រភា ្រភា	Aroclor 1248	685 885
č .0	<pre><01 <01 <02 <01 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02</pre>	(/ฮก เ/ฮก [/ฮก [/ฮก	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1248	685 885 285 985 585
č .0	I 0> I 0> I 0> I 0> I 0> I 0>	[/ភព]/ភព]/ភព]/ភព]/ភព	Endrin Aldehyde Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1248	236 238 238 239 239 232 232
č .0	1 0> 1 0> 1 0> 1 0> 1 0> 1 0>	[/ភព [/ភព [/ភព [/ភព [/ភព	Endosulfan Sulfate Endrin Aldehyde Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1248	236 238 238 232 232 232 232 233
č .0	1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0>	/ភព /ភព /ភព /ភព /ភព /ភព	Endosulfan II Endosulfan Sulfate Endrin Aldehyde Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1248	236 238 238 232 232 232 232 233 233 235
č .0	1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0> 1 0>	/311 /311 /311 /311 /311 /311 /311 /311	Endosultan I Endosultan II Endosultan Sultate Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1232 Aroclor 1248	236 238 234 232 232 235 235 235 235 235 235 235 235
č .0	$ \begin{array}{r} 1 0> \\ 1 0> \\ 1 0> \\ 1 0> \\ 1 0> \\ 1 0> \\ 1 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0> \\ 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	/311 /311 /311 /311 /311 /311 /311 /311	Delta-BHC Endosultan I Endosultan II Endosultan Sultate Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1224 Aroclor 1248	239 238 232 232 232 232 232 233 235 235 235 231 231 235
č .0	$ \begin{array}{r} 1 \\ $	/311 /311 /311 /311 /311 /311 /311 /311 /311	Beta-BHC Delta-BHC Endosultan I Endosultan II Endrin Aldehyde Aroclor 1221 Aroclor 1222 Aroclor 1224 Aroclor 1248	239 238 232 232 232 232 232 233 235 235 235 235
č .0	$ \begin{array}{r} 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 50 0 > \\ \hline $	/311 /311	Aroclor 1254 Beta-BHC Delta-BHC Endosultan I Endosultan Sultate Endosultan Sultate Aroclor 1221 Aroclor 1221 Aroclor 1232 Aroclor 1248	2330 234 235 235 235 235 235 235 235 235 235 235
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 10>\\ 10>\\ 10>\\ 10>\\ 10>\\ 100$	/311 /311	Aroclor 1242 Aroclor 1254 Beta-BHC Delta-BHC Endosultan II Endosultan II Aroclor 1221 Aroclor 1221 Aroclor 1222 Aroclor 1223 Aroclor 1228 Aroclor 1248	230 235 238 238 239 235 235 235 235 255 255 255 255 255 255
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 0 > \\ 1 0 > \\ 5 0 > \\ \hline \end{array} $	/311 /311	Toxaphene Arocior 1242 Arocior 1254 Enderin Aldehyde Enderin Aldehyde Endosulfan II Endosulfan II En	236 238 238 239 239 239 239 235 235 235 255 255 255 255 255 216 215
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 > \\ 1 0 $	/311 /311	Endrin Toxaphene Arocior 1242 Arocior 1254 Enderin Aldehyde Enderin Aldehyde Endosulfan II Endosulfan II Endosulfa	236 238 238 239 232 239 237 235 235 235 255 255 255 255 255 255 255
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग ।/उग	Dieldrin Endrin Toxaphene Aroclor 1242 Aroclor 1254 Beta-BHC Delta-BHC Endosulfan II Endosulfan II Endosulfan II Endosulfan Sulfate Endosulfan Sulfate Aroclor 1221 Aroclor 1232 Aroclor 1232	236 238 238 239 232 239 237 237 235 235 235 257 257 257 257 257 257 257 257 257 25
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/31 /31 /31 /31 /31 /31 /31 /31	Aldrin Endrin Endrin Aroclor 1242 Aroclor 1254 Aroclor 1254 Endosulfan II Endosulfan II Endosulfan Sulfate Endrin Aldehyde Aroclor 1221 Aroclor 1232 Aroclor 1232	236 238 238 238 239 239 239 239 235 235 235 255 255 255 255 215 215
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/31 /31 /31 /31 /31 /31 /31 /31	Héptachlor Epoxide Aldrin Endrin Focaphene Aroclor 1242 Aroclor 1242 Aroclor 1254 Endosulfan II Endosulfan II Endo	236 237 238 238 239 239 239 239 239 235 235 235 255 255 255 215 215 215 215 215
\$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/311 /311	Héptachlor Epoxide Héptachlor Epoxide Aldrin Endrin Toxaphene Aroclor 1242 Aroclor 1242 Endosulfan II Endosulfan I	236 237 238 238 239 239 239 235 235 235 235 235 235 235 235 235 215 215 215 215 215 215 215 215
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u>	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/31 /31 /31 /31 /31 /31 /31 /31	Lindane (Gamma-BHC) Heptachlor Heptachlor Epoxide Aldrin Endrin Aroclor 1242 Aroclor 1242 Endosulfan II Endosulfan	236 237 238 238 237 237 237 235 235 235 235 235 257 215 215 215 215 215 215 215 215 215 215
\$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/311 /311	Alpha-BHC Lindane (Gamma-BHC) Heptachlor Heptachlor Epoxide Aldrin Endrin Aroclor 1242 Aroclor 1242 Endosulfan II Endosulfan II	236 237 238 238 237 237 237 237 237 237 237 237 237 237
\$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0	$ \begin{array}{c c} 1 & 0 > \\ 1 & 0 > \\ 1 & 0 > \\ 1 & 0 > \\ 1 & 0 > \\ 1 & 0 > \\ 1 & 0 > \\ 1 & 0 > \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 $	/31 /31 /31 /31 /31 /31 /31 /31	PP'-DDT Alpha-BHC Lindane (Gamma-BHC) Heptachlor Heptachlor Epoxide Aldrin Endrin Aroclor 1242 Aroclor 1242 Endosulfan II Endosulfan II Endosu	235 235 238 238 239 235 235 235 235 235 235 235 235 235 235
\$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/311 /311	PP'-DDD PP'-DDT Alpha-BHC Lindane (Gamma-BHC) Heptachlor Heptachlor Epoxide Dieldrin Endein Jole Aroclor 1242 Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan I Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate	236 237 238 238 238 237 237 237 237 237 237 237 237 237 237
<u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>\$`0</u> <u>10`0</u> <u>10`0</u> <u>10`0</u> <u>10`0</u>	$ \begin{array}{c c} 1 & 0 > \\ 1 & 0 $	1/311 1/311	рр'.DDE рр'.DDT Pp'.DDT Alpha.BHC Lindane (Gamma.BHC) Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Endein Dieldrin Endelor 1242 Aroclor 1242 Endosulfan I Endosulfan I Endo	235 235 238 238 238 235 235 235 235 235 235 235 255 255 255
\$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0 \$`0	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	/311 /311	PP'-DDD PP'-DDT Alpha-BHC Lindane (Gamma-BHC) Heptachlor Heptachlor Epoxide Dieldrin Endein Jole Aroclor 1242 Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan I Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate Endosulfan Sulfate	236 237 238 238 238 237 237 237 237 237 237 237 237 237 237

TABLE 6.4 2003 ANNUAL DATA SUPPLY WELL, SW2

TEST	ANNUAL MRP	UNIT	May	LIMIT
	(BASE/NEUTRAL EXTRACTIBLES)			
	Acenaphthene	μg/l	<1	
	Acenaphthylene	μg/1	<10	
	Anthracene	μg/l	<10	
	Benzidine	μg/l	<5 <5	
	Benzo(a)anthracene	μg/l		0.2
	Benzo(a)pyrene Benzo(b)fluoranthene	μg/]	<10 <10	0.2
	1,12-Benzoperylene	<u>μg/l</u>	<5	
	Benzo(k)fluoranthene	μg/l μg/l	<10	· · · · · · · · · · · · · · · · · · ·
	Bis(2-chloroethoxy)methane	μg/1 μg/1	<5	
	Bis(2-Chloroethyl)ether	μg/1 μg/1	<1	
	Bis(2-chloroisopropyl)ether	μg/1 μg/l	<2	
	Bis(2-diethylhexyl)phthalate	$\frac{\mu g/l}{\mu g/l}$	<5	4
	4-Bromophenyl Phenyl Ether	μ <u>g</u> /l	<5	· · · · · · · · · · · · · · · · · · ·
	Butylbenzyl Phthalate	μg/l	<10	
	2-Chloronaphthalene	μg/l	<10	
	4-Chlorophenyl Phenyl Ether	μg/l	<5	
	Chrysene	$\mu g/l$	<10	
	1,2,5,6-Dibenzanthracene	μg/l	<10	
	1,2-Dichlorobenzene	μg/l	<2	
	1,3-Dichlorobenzene	μg/l	<1	
	1,4-Dichlorobenzene	μg/l	<1	
	3,3'-Dichlorobenzidine	μg/l	<5	1
	Diethyl Phthalate	μg/l	<2	
	Dimethyl Phthalate	μg/l	<2	
	Di-n-Butyl Phthalate	μg/1	<10	
	2,4-Dinitrotoluene	µg/l	<5	
827	2,6-Dinitrotoluene	µg/l	<5	
828	Di-n-Octyl Phthalate	μg/l	<10	
829	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	μg/l	<1	
	Fluorene	μg/l	<10	
	Hexachlorobenzene	μg/l	<1	1
	Hexachlorobutadiene	μg/l	<1	
	Hexachlorocyclopentadiene	μg/l	<5	50
835	Hexachloroethane	µg/l	<1	<u>ا</u>
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	l –
	Isophorone	μg/l	<1	
838	Naphthalene	μg/l	<1	
	Nitrobenzene	µg/l	<1	l
840	n-Nitrosodimethylamine	μg/l	<5	┥ ┝━━━
841	n-Nitrosodi-n-propylamine	μg/l	<5	┥ ┝━━━━━
	Phenanthrene	μg/l	<10	┨ ┝━━━━
	Pyrene	<u>μg/l</u>	<0.00012	0.00003
844	2,3,7,8-TCDD	μg/l	<0.00012	70
846	1,2,4-Trichlorobenzene	<u>μg/l</u>	<1	
857	n-Nitrosodiphenylamine	µg/l	<u></u>	┥ ┝━━━
TEST	ANNUAL MRP	UNIT	May	LIMIT
	(ACID EXTRACTIBLES)	ug/l	<5	┥ ┝
845 847	2-Chlorophenol	μg/l μg/l	<5	· ۲۰۰۰
	2,4-Dimethylphenol	μg/i μg/i	<2	1
849	2,4-Dinitrophenol	μg/1 μg/l	<5	┨ ┠─────
849	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μ <u>g</u> /l	<5	┫ ┠┈────
850	2-Methyl-4,8-Dimuophenor (p-Chioro-m-Cresor)	μg/l μg/l	<10	1
852	4-Nitrophenol	μg/I	<10	1
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	$\mu g/l$	<1	1
854	Pentachlorophenol	μg/1	<5	
855	Phenol	$\mu g/l$	<1	1 – – –
856	2,4,6-Trichlorophenol	μg/l	<10	1
	1-7·7			······································

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

...

· · · · · ·

TABLE 6.52003 SEMIANNUAL DATASUPPLY WELL, SW5

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	September	Mean	Max	Min	LIMIT
1S1	pH	0-14						
1S2	Temperature	°C						
1S3	Dissolved Oxygen	mg/l						
1S4	Electrical Conductivity	µmhos/cm						1600 ⁻¹
900	Depth to Groundwater	ft						
C15	Total Petroleum Hydrocarbons	μg/l	<60	<60	<60	<60	<60	
155	Total Dissolved Solids	mg/l	341	337	339	341	337	1000^{2}
201	Ammonia	mg-N/l	<0.1	0.3	<0.2	0.3	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	4.49	6.55	5.52	6.55	4.49	10^{3}
205	Nitrite	mg-N/l	<0.02	<0.02	<0.02	<0.02	< 0.02	10^{3}
257	Sulfate	mg/l	47	49	48	49	47	500 ⁴
301	Chloride	mg/l	62	40	51	62	40	500 ⁴
315	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	<500	<500	<500	<500	
602	Chloroform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
610	Bromoform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
723	Sodium	mg/l	30.6	31.3	31.0	31.3	30.6	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

.

TABLE 6.6 2003 ANNUAL DATA SUPPLY WELL, SW5

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	June	September	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<50	<11	
TEST	ANNUAL MRP (METALS)	UNIT	June	September	LIMIT
703	Calcium	mg/l	63.6	56.7	
704	Magnesium	mg/l	11.2	11	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.094		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	<0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	0.099		0.3
714	Lead	mg/l	0.004		
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	3.1	<10	
720	Selenium	mg/l	0.0013		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.188		5
725	Antimony	mg/l	< 0.0005		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l			

TABLE 6.6 2003 ANNUAL DATA SUPPLY WELL, SW5

TEST	ANNUAL MRP	UNIT		
	(PESTICIDES & PCBs)	UNIT	June	
	PP'-DDE	μg/l	< 0.01	
504	PP'-DDD	μg/l	< 0.01	
	PP'-DDT	μg/l	<0.01	
	Alpha-BHC	μg/l	<0.01	
	Lindane (Gamma-BHC)	μg/l	<0.01	0.2
	Heptachlor	μg/l	<0.01	0.01
	Heptachlor Epoxide	μg/l	<0.01	0.01
512	Aldrin	μ <u>g/l</u>	<0.01	
	Dieldrin	μg/l	<0.01	
	Endrin	μg/l	<0.01	2
519	Toxaphene Aroclor 1242	μ <u>g</u> /l	<0.5	3
520	Aroclor 1254	μ <u>g/l</u>	<0.1	
	Beta-BHC	μg/l	<0.05 <0.01	
	Delta-BHC	μ <u>g/l</u> μ <u>g</u> /l	<0.01	
	Endosulfan I	$\mu g/l$	<0.01	
	Endosulfan II	μg/l	<0.01	
	Endosulfan Sulfate	$\mu g/l$	<0.1	
	Endrin Aldehyde	μg/l	<0.01	
	Aroclor 1016	μ <u>μ</u> g/l	<0.01	0.5
	Aroclor 1221	μg/l	<0.1	0.5
	Aroclor 1232	$\mu g/l$	<0.1	0.5
	Aroclor 1248	μg/l	<0.1	0.5
539	Aroclor 1260	μg/l	<0.1	0.5
540	Technical Chlordane	μg/l	< 0.05	0.1
TEST	ANNUAL MRP	UNIT	Inne	LIMIT
ILSI	(VOLATILE ORGANICS)	UNII	June	LIMIT
601	Methylene Chloride	μg/l	<0.5	
	1,1,1-Trichloroethane	μg/l	<0.5	200
604	Carbon Tetrachloride	μg/l	< 0.5	0.5
	1,1-Dichloroethene	μg/l	<0.5	6
	Trichloroethylene	μg/l	<0.5	5
	Tetrachloroethylene	μg/l	<0.5	5
611	Chlorobenzene	μ <u>g/l</u>	<0.5	70
	Vinyl Chloride	μ <u>g/</u> 1	<0.5	0.5
Contraction of the local division of the loc	o-Dichlorobenzene (1,2-	μ <u>g/l</u>	<0.5	600
	m-Dichlorobenzene (1,3-	μ <u>g</u> /l	<0.5	
615	p-Dichlorobenzene (1,4-	<u>μg/l</u>	<0.5 <0.5	5
	1,1-Dichloroethane 1,1,2-Trichloroethane	<u>μg/l</u>	<0.5	5
	1,2-Dichloroethane	μg/l μg/l	<0.5	0.5
	Benzene	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u>	<0.5	0.5
620	Toluene	μg/1	<0.5	150
	Ethyl Benzene	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμ	<0.5	700
	Trans-1,2-Dichloroethylene	μ <u>μ</u> g/l	<0.5	10
646	Bromomethane	μg/l	<0.5	
647	Chloroethane	μg/l	< 0.5	
648	2-Chloroethylvinylether	μg/l	<0.5	
	Chloromethane	μg/l	<0.5	
	1,2-Dichloropropane	μg/l	<0.5	5
651	Cis-1,3-Dichloropropene	μg/l	<0.5	0.5
652	Trans-1,3-Dichloropropene	μg/l	<0.5	0.5
	1,1,2,2-Tetrachloroethane	μg/l	<0.5	1
654	Acrolein	μg/l	<2	
655	Acrylonitrile	μg/l	<2	
662	Methyl Tertiary Butyl Ether	μg/l	<0.5	

TABLE 6.6 2003 ANNUAL DATA SUPPLY WELL, SW5

TEST	ANNUAL MRP	UNIT	June	LI	міт
	(BASE/NEUTRAL				
800	Acenaphthene	μg/l	<1		
801	Acenaphthylene	μg/l	<10		
802	Anthracene	μ <u>g</u> /l	<10		
803	Benzidine	μ <u>g/l</u>	<5		
	Benzo(a)anthracene	μ <u>g/l</u>	<5		_
805	Benzo(a)pyrene	μg/l	<10).2
806	Benzo(b)fluoranthene	μg/l	<10		
	1,12-Benzoperylene	<u>μg/l</u>	<5		
808	Benzo(k)fluoranthene	μ <u>g</u> /l	<10		
809	Bis(2-chloroethoxy)methane	μ <u>g</u> /l	<5		
	Bis(2-Chloroethyl)ether	μ <u>g/l</u>	<1		
811	Bis(2-chloroisopropyl)ether	μ <u>g/l</u> /	<2	·	4
812	Bis(2-diethylhexyl)phthalate	μ <u>g</u> /l	<5	·	4
813	4-Bromophenyl Phenyl Ether	μg/l	<5		
814	Butylbenzyl Phthalate	μ <u>g/l</u>	<10		
815	2-Chloronaphthalene	μ <u>g/l</u>	<10		
816	4-Chlorophenyl Phenyl Ether	μ <u>g</u> /l	<5	∣	
817	Chrysene	<u>μg/l</u>	<10		
818	1,2,5,6-Dibenzanthracene	μg/l	<10	∣	
819	1,2-Dichlorobenzene	μg/l	<2	\	
	1,3-Dichlorobenzene	µg/l	<1	{	
	1,4-Dichlorobenzene	μg/l	<1		
822	3,3'-Dichlorobenzidine	µg/l	<5		
823	Diethyl Phthalate	µg/l	<2	┦ ┣━	
824	Dimethyl Phthalate	<u>µg/l</u>	<2	┨ ┣━	
	Di-n-Butyl Phthalate	μg/l	<10	1 <u>–</u>	
826	2,4-Dinitrotoluene	μg/l	<5	┥ ┝━	
827	2,6-Dinitrotoluene	μ <u>g/l</u>	<5	┨ ┝	
	Di-n-Octyl Phthalate	<u>μg/l</u>	<10		
	1,2-Diphenylhydrazine	μg/l	<1	┨ ┣━━	
830	Fluoranthene	μg/l	<1	{ ⊢	
831	Fluorene	μg/l	<10	Ⅰ ⊢	
832	Hexachlorobenzene	µg/l		┨ ┣	1
833	Hexachlorobutadiene	μg/l	<1	┥ ┣_	50
834	Hexachlorocyclopentadiene	µg/l	<5	4 -	50
835	Hexachloroethane	µg/l	<1	ا	
836	Indeno(1,2,3-c,d)pyrene	ug/l	<10	4 h	
837	Isophorone	μg/l	<1		
	Naphthalene	µg/l	<1	4 –	
	Nitrobenzene	μg/l	<1	4 –	
	n-Nitrosodimethylamine	μg/l	<5	4	
841	n-Nitrosodi-n-propylamine	µg/l	<5	{ ⊢	
842	Phenanthrene	μ <u>e/l</u>	<5	┨ ┝━-	
843	Pyrene	μ <u>g/l</u>	<10		00000
844	2,3,7,8-TCDD	μ <u>g</u> /l	<0.00024		00003
846	1,2,4-Trichlorobenzene	μg/l	<5	┥ ┣━	70
857	n-Nitrosodiphenylamine	µg/l	<1	┥ ┣━	
TEST	ANNUAL MRP	UNIT	June	LI	MIT
	(ACID EXTRACTIBLES)	μg/l	<5	┥ ┣─	
845	2-Chlorophenol	μg/1 μg/1	<5	1 F-	
847	2,4-Dichlorophenol	μg/l μg/l	<	┥ ┣━━	
848	2,4-Dimethylphenol	μg/l	<5	┥ ┝─	
849	2,4-Dinitrophenol		<5	┥ ┣━	
850	2-Methyl-4,6-Dinitrophenol (p-	μg/l μg/l	<10	┥ ┣━	
851	2-Nitrophenol	μg/l μg/l	<10	┥ ┣━	
852	4-Nitrophenol		<1	┤ ┣━	
853	4-Chloro-3-Methylphenol (4,6-Dinitro-	μg/l μg/l	<5	┥ ┣─	1
854	Pentachlorophenol	μg/1 μg/l	<1	┥ ┣━	
855	Phenol		<10	┦ ┣─	
856	2,4,6-Trichlorophenol	μg/l	<u> </u>	<u> </u>	

TABLE 6.7 2003 SEMIANNUAL DATA SUPPLY WELL, SW7

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	April	July	Mean	Max	Min	LIMIT
1S1	pH	0-14						
1S2	Temperature	°C						
1\$3	Dissolved Oxygen	mg/l						
1S4	Electrical Conductivity	µmhos/cm						1600 ¹
900	Depth to Groundwater	ft						
C15	Total Petroleum Hydrocarbons	μg/l	<60	<50	<55	<60	<50	
155	Total Dissolved Solids	mg/l	266	222	244	266	222	1000 ²
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	3.44	2.67	3.06	3.44	2.67	10^{3}
205	Nitrite	mg-N/l	<0.02	<0.02	<0.02	<0.02	< 0.02	10^{3}
257	Sulfate	mg/l	31	28.7	30	31	28.7	500 ⁴
301	Chloride	mg/l	23	19	21	23	19	500 ⁴
315	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	<500	<500	<500	<500	
602	Chloroform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
610	Bromoform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
723	Sodium	mg/l	24.5	15.3	19.9	24.5	15.3	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

⁴ 250 recommended / 500 upper / 600 short term

TABLE 6.82003 ANNUAL DATASUPPLY WELL, SW7

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	April	July	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<50	<11	200
TEST	ANNUAL MRP (METALS)	UNIT	April	July	LIMIT
703	Calcium	mg/l	51.3	46.9	
704	Magnesium	mg/l	10	9.2	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.073		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	< 0.05		0.3
714	Lead .	mg/l	< 0.002		
716	Manganese	mg/l	< 0.005		0.05
717	Мегсигу	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	2.4	2.6	
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.064		5
725	Antimony	mg/l	< 0.0005		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l			

TABLE 6.8 2003 ANNUAL DATA SUPPLY WELL, SW7

TEST	ANNUAL MRP	UNIT	April	July	LIMIT
502	(PESTICIDES & PCBs) PP'-DDE	μg/l	<0.01		
502	PP'-DDD	$-\mu g/l$	<0.01	<u></u>	
506	PP'-DDT	$\mu g/l$	<0.01	<u> </u>	
508	Alpha-BHC	μg/l	<0.01	<u> </u>	
509	Lindane (Gamma-BHC)	μg/1	< 0.01		0.2
510	Heptachlor	μg/l	< 0.01		0.01
511	Heptachlor Epoxide	μg/1	< 0.01		0.01
512	Aldrin	μg/l	< 0.01		
513	Dieldrin	μg/1	< 0.01		
514	Endrin	μg/l	<0.01		2
515	Toxaphene	μg/l	<0.5		3
519	Aroclor 1242	μg/1	<0.1		
520	Aroclor 1254	μg/l	<0.05		
523	Beta-BHC	μg/l	<0.01		
524	Delta-BHC	μg/l	<0.01		
531	Endosulfan I	μg/l	<0.01		
532	Endosulfan II	μg/1		< 0.01	
533	Endosulfan Sulfate	μg/l		<0.1	
534	Endrin Aldehyde	μg/l	-0.1	< 0.01	0.5
535	Aroclor 1016	μg/1	<0.1		0.5
536	Aroclor 1221	μg/l	<0.1	╉╾╾╾╼╼╼╼╼╼	0.5
537	Aroclor 1232	μg/l	<0.1	+	0.5
538	Aroclor 1248	μg/l μg/l	<0.1	+	0.5
539	Aroclor 1260 Technical Chlordane	<u>μg/i</u>	<0.05		0.1
_540	ANNUAL MRP		<u> </u>	+	
TEST	(VOLATILE ORGANICS)	UNIT	April		LIMIT
601	Methylene Chloride	μg/l	<0.5	1	
603	1,1,1-Trichloroethane	ug/l	<0.5	4	200
604	Carbon Tetrachloride	μg/l	<0.5	4	0.5
605	1,1-Dichloroethene	µg/1	<0.5	4	6
606	Trichloroethylene	μg/l	<0.5	-	5
607	Tetrachloroethylene	µg/l	<0.5	-	70
611	Chlorobenzene	μg/l	<0.5	-	0.5
612	Vinyl Chloride (12 Di Llasharana)	μg/1	<0.5	-1	600
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l μg/l	<0.5	4	
614	m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	<0.5	-1	5
615	1,1-Dichloroethane	$\mu g/l$	<0.5	-1	5
<u>616</u> 618	1,1,2-Trichloroethane	μg/1	< 0.5	-	5
619	1,2-Dichloroethane	μg/1	<0.5	1	0.5
620	Benzene	μg/l	<0.5	1	1
621	Toluene	μg/l	< 0.5	-1	150
624		μ <u>g</u> /l	< 0.5		700
645	Trans-1,2-Dichloroethylene	μg/1	< 0.5		10
646		_μg/l	< 0.5		
647	Chloroethane	μg/l	< 0.5		
648		_μg/l	< 0.5	1	
649		μg/l	<0.5	1	<u> </u>
650		μg/l	<0.5	4	5
651	Cis-1,3-Dichloropropene	μg/l	<0.5	4	0.5
652	Trans-1,3-Dichloropropene	μg/l	<0.5		0.5
653		μ <u>g/l</u>	<0.5	4	
654		µg/l	<2		
655	Acrylonitrile	μ <u>g/1</u>	<2		
662	Methyl Tertiary Butyl Ether	μg/l	< 0.5	1	

TABLE 6.8 2003 ANNUAL DATA SUPPLY WELL, SW7

	ANNUAL MRP			
TEST	(BASE/NEUTRAL EXTRACTIBLES)	UNIT	April	LIMIT
800	Acenaphthene	μg/1	<1	
801	Acenaphthylene	μg/l	<10	
802	Anthracene	μg/l	<10	
	Benzidine	μg/l	<5	
	Benzo(a)anthracene	μg/l	<5	
	Benzo(a)pyrene	μg/l	<10	0.2
	Benzo(b)fluoranthene	μg/l	<10	
	1,12-Benzoperylene	μg/l	<5	
	Benzo(k)fluoranthene	μg/l	<10	
	Bis(2-chloroethoxy)methane	μg/l	<5	
810	Bis(2-Chloroethyl)ether	μg/l	<1	
	Bis(2-chloroisopropyl)ether	µg/l	<2	
812	Bis(2-diethylhexyl)phthalate	μg/l	<5	4
813	4-Bromophenyl Phenyl Ether	μg/l	<5	
	Butylbenzyl Phthalate	μg/l	<10	····
	2-Chloronaphthalene	μg/l	<10	
816	4-Chlorophenyl Phenyl Ether	<u>μg/l</u>	<5 <10	
817	Chrysene	<u>μg/l</u>	<10	
	1,2,5,6-Dibenzanthracene	μg/l μg/l	<10	┝───┤
819 820	1,2-Dichlorobenzene 1,3-Dichlorobenzene	μg/1 μg/1	<1	┝━━━┥
820	1,4-Dichlorobenzene	μg/1 μg/1	<1	
	3.3'-Dichlorobenzidine	μg/1	<5	├──┤
823	Diethyl Phthalate	μg/1 μg/1	<2	
	Dimethyl Phthalate	μ <u>g/1</u> μg/l	<2	
	Di-n-Butyl Phthalate	μg/I	<10	
	2.4-Dinitrotoluene	μg/l	<5	
820	2,6-Dinitrotoluene	$\mu g/l$	<5	
828	Di-n-Octyl Phthalate	μg/l	<10	
829	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	μ <u>g</u> /l	<1	
831	Fluorene	μg/l	<10	
832	Hexachlorobenzene	μg/1	<1	1
833	Hexachlorobutadiene	μg/l	<1	
834	Hexachlorocyclopentadiene	μg/l	<5	50
835	Hexachloroethane	μg/l	<1	
836	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
837	Isophorone	µg/l	<1	
838	Naphthalene	µg/l	<1	↓
839	Nitrobenzene	µg/l	<1	↓
840	n-Nitrosodimethylamine	µg/l	<5	┥ ┝┥
841	n-Nitrosodi-n-propylamine	µg/l	<5	↓
842	Phenanthrene	μg/l	<5	┨ ┣━━━━
843	Pyrene	μg/l	<10	0.00000
844	2,3,7,8-TCDD	μg/l	<0.000055	0.00003
846	1,2,4-Trichlorobenzene	μg/l	<5	70
857	n-Nitrosodiphenylamine	μg/l	<1	┨ ┝
TEST	ANNUAL MRP	UNIT	April	LIMIT
	(AUDEATRACIIDLES)			
845	2-Chlorophenol	μg/l	<5	┥ ┝┉┉┉┉
847	2,4-Dichlorophenol	μg/l	<5	┥ ┝
848	2,4-Dimethylphenol	<u>μg/l</u>		┥ ┝━━━━
849	2,4-Dinitrophenol	μ <u>g/l</u>	<5	┥ ┝━━━
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	<u>μg/l</u>	<10	┥ ┣
851	2-Nitrophenol	μ <u>g/l</u> μg/l	<10	┥ ┝────
852			<1	┥ ┝───
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/l	<5	I ⊢
854	Pentachlorophenol	μg/l μg/l		╡ ┝╍┷━
855	Phenol 2,4,6-Trichlorophenol	μ <u>μ</u> μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	<10	┫ ┝────
856	[2,4,0-1 richlorophenol	με/1	J	1

TABLE 6.9 2003 SEMIANNUAL DATA SUPPLY WELL, SW8

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	September	Mean	Max	Min	LIMIT
151	pH	0-14						
1S2	Temperature	°C						
1S3	Dissolved Oxygen	mg/l						
1S4	Electrical Conductivity	µmhos/cm						1600 ⁻¹
900	Depth to Groundwater	ft						
C15	Total Petroleum Hydrocarbons	μg/l	<60	240	<150	240	<60	
155	Total Dissolved Solids	mg/l	235	234	235	235	234	1000 ²
201	Ammonia	mg-N/l	<0.1	<0.1	< 0.1	< 0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	2.88	2.92	2.90	2.92	2.88	10^{3}
205	Nitrite	mg-N/l	<0.02	< 0.02	<0.02	<0.02	< 0.02	10^{3}
257	Sulfate	mg/l	32	31	32	32	31	500 ⁴
301	Chloride	mg/l	22	26	24	26	22	500 ⁴
315	MBAS	mg/l	< 0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	268	<500	<384	<500	268	
602	Chloroform	μg/l	<0.5	<0.5	< 0.5	< 0.5	< 0.5	
608	Bromodichloromethane	μg/1	<0.5	<0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/1	<0.5	<0.5	<0.5	<0.5	<0.5	
610	Bromoform	μ <u>g</u> /l	< 0.5	<0.5	<0.5	<0.5	<0.5	
723	Sodium	mg/l	17.6	16	17	17.6	16	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.10 2003 ANNUAL DATA SUPPLY WELL, SW8

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	June	September	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<11	<12	
TEST	ANNUAL MRP (METALS)	UNIT	June	September	LIMIT
703	Calcium	mg/l	48.5	40.5	
704	Magnesium	mg/l	9.3	8.6	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.067		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	< 0.05		0.3
714	Lead	mg/l	< 0.002		
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	2.5	<10	
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.045		5
725	Antimony	mg/l	< 0.0005		0.006
726	Beryllium	mg/l	<0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l			

TABLE 6.10 2003 ANNUAL DATA SUPPLY WELL, SW8

TROT	ANNUAL MRP			
TEST	(PESTICIDES & PCBs)	UNIT	June	LIMIT
502	PP'-DDE	μg/l	< 0.01	1
	PP'-DDD	μg/l	<0.01	
	PP'-DDT	μg/l	<0.01	
	Alpha-BHC	μg/l	<0.01	
	Lindane (Gamma-BHC)	μg/l	< 0.01	0.2
	Heptachlor	μg/l	< 0.01	0.01
	Heptachlor Epoxide	μ <u>g/l</u>	< 0.01	0.01
512	Aldrin	μ <u>g</u> /l	< 0.01	
513	Dieldrin	<u>μg/l</u>	<0.01	
	Endrin	μ <u>g/1</u>	<0.01	2
	Toxaphene	<u>μg/l</u>	<0.5	3
520	Aroclor 1242	μ <u>g</u> /l	<0.1	
520	Aroclor 1254	μg/l	<0.05	┦ ᆞ ┟━━━━━
	Beta-BHC Delta-BHC	μg/l	<0.01 <0.01	┥ ┝━━━━━
	Endosulfan I	<u>μg/l</u>	<0.01	┥ ┝────
	Endosulfan II	<u>μg/l</u>		·
533	Endosulfan Sulfate	μg/l μg/l	<0.01 <0.1	·
	Endrin Aldehyde	μ <u>g/1</u> μg/l	<0.01	┦ ┣────
535	Aroclor 1016		<0.1	0.5
536	Aroclor 1221	_μg/l μg/l	<0.1	0.5
537	Aroclor 1222	μg/1 μg/1	<0.1	0.5
538	Aroclor 1232	μg/i μg/i	<0.1	0.5
539	Aroclor 1248	μg/l	<0.1	0.5
540	Technical Chlordane	$\mu g/l$	<0.05	0.1
	ANNUAL MRP		-0.05	۲ <u></u>
TEST	(VOLATILE ORGANICS)	UNIT	June	LIMIT
	Methylene Chloride	µg/l	<0.5	
603	1,1,1-Trichloroethane	μg/l	<0.5	200
604	Carbon Tetrachloride	µg/l	<0.5	0.5
	1,1-Dichloroethene	<u>μg/1</u>	<0.5	6
606	Trichloroethylene	μ <u>g/l</u>	<0.5	5
607	Tetrachloroethylene	μg/l	<0.5	5
611	Chlorobenzene	μ <u>g/1</u>	<0.5	70
612	Vinyl Chloride	μg/l	<0.5	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	µg/l	<0.5	600
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	μ <u>g/l</u>	<0.5	
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	μ <u>g/l</u>	<0.5	5
	1,1-Dichloroethane	<u>μg/l</u>	<0.5	5
618	1,1,2-Trichloroethane	μg/l	<0.5	5
	1,2-Dichloroethane	μg/l	<0.5 <0.5	0.5
	Benzene	μg/l	<0.5	
621	Toluene	μ <u>g</u> /l	<0.5	<u>150</u> 700
624	Ethyl Benzene	μg/l μg/l	<0.5	10
<u>645</u> 646	Bromomethane	μg/1 μg/1	<0.5	
646	Chloroethane	μg/l μg/l	<0.5	┥ ┝
	2-Chloroethylvinylether	$\mu g/l$	<0.5	┤ ┣━━━━
649	Chloromethane	$\mu g/l$	<0.5	┨ ┝━━━━
	1,2-Dichloropropane	$\mu g/l$	<0.5	5
651	Cis-1,3-Dichloropropene	μ <u>g</u> /1 μg/1	<0.5	0.5
652	Trans-1,3-Dichloropropene	μ <u>μ</u> ε/1 μg/l	<0.5	0.5
653	1,1,2,2-Tetrachloroethane	μ <u>μ</u> g/l	<0.5	
654	Acrolein	$\mu g/l$	<2	┤ ┝─┴──
	Acrylonitrile	$\mu g/l$	<2	1
662	Methyl Tertiary Butyl Ether	$\mu g/l$	< 0.5	1
	Interior Terrary Duryr Euror	<u> </u>		

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

- -

TABLE 6.10 2003 ANNUAL DATA SUPPLY WELL, SW8

	ANNUAL MRP			
TEST	(BASE/NEUTRAL EXTRACTIBLES)	UNIT	June	
800	(BASE/NEUTRAL EXTRACTIBLES) Acenaphthene		<1	
	Acenaphthylene	μg/l	<1 <10	
	Anthracene	μg/l		
	Benzidine	μg/l	<10 <5	
		μg/l	<5	
	Benzo(a)anthracene	<u>μg/l</u>		
	Benzo(a)pyrene	μg/l	<10	
	Benzo(b)fluoranthene	µg/l	<10	
	1,12-Benzoperylene	µg/l	<5	
	Benzo(k)fluoranthene	µg/l	<10	
	Bis(2-chloroethoxy)methane	µg/l	<5	
	Bis(2-Chloroethyl)ether	µg/l	<1	
	Bis(2-chloroisopropyl)ether	µg/l	<2	
	Bis(2-diethylhexyl)phthalate	μg/]	<5	
	4-Bromophenyl Phenyl Ether	μg/l	<5	
	Butylbenzyl Phthalate	μg/l	<10	
	2-Chloronaphthalene	μg/l	<10	
	4-Chlorophenyl Phenyl Ether	µg/l	<5	
817	Chrysene	μg/l	<10	
	1,2,5,6-Dibenzanthracene	μg/l	<10	
	1,2-Dichlorobenzene	μg/l	<2	
	1,3-Dichlorobenzene	μg/l	<1	
	1,4-Dichlorobenzene	_μg/l	<1	
	3,3'-Dichlorobenzidine	μg/l	<5	
823	Diethyl Phthalate	μg/l	<2	
824	Dimethyl Phthalate	μg/l	<2	
825	Di-n-Butyl Phthalate	μg/l	<10	
826	2,4-Dinitrotoluene	μg/l	<5	
827	2,6-Dinitrotoluene	μg/l	<5	
828	Di-n-Octyl Phthalate	μg/l	<10	
	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	μg/l	<1	
831	Fluorene	μg/l	<10	
	Hexachlorobenzene	μg/l	<1	
	Hexachlorobutadiene	μg/l	<1	
	Hexachlorocyclopentadiene	μg/l	<5	
	Hexachloroethane	μg/l	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
	Isophorone	μg/l	<1	
838	Naphthalene	μg/l	<1	
839	Nitrobenzene	μg/l	<1	
	n-Nitrosodimethylamine	μg/l	<5	1
841	n-Nitrosodi-n-propylamine	μg/l	<5	1
842	Phenanthrene	μg/l	<5	1
843	Pyrene	μg/1 μg/1	<10	1
	2,3,7,8-TCDD	μ <u>g</u> /l	<0.000052	1
846	1,2,4-Trichlorobenzene	$\mu g/l$	<5	1
857	n-Nitrosodiphenylamine	$\mu g/l$	<1	1
	ANNUAL MRP			1
гезт	(ACID EXTRACTIBLES)	UNIT	June	
845	2-Chlorophenol	μg/l	<5	1
845	2.4-Dichlorophenol	$\mu g/l$	<5	1
		μ <u>g</u> /1 μg/l	<2	1
	2,4-Dimethylphenol	μg/l μg/l	<5	1
	2,4-Dinitrophenol		<5	1
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l		4
	2-Nitrophenol	μ <u>g/l</u>	<10	4
	4-Nitrophenol	μ <u>g/l</u>	<10 <1	4
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μ <u>g</u> /l		4
	Pentachlorophenol	μg/l	<5	4
	Phenol	μg/l	<1	4
856	2.4.6-Trichlorophenol			

856 2,4,6-Trichlorophenol

TABLE 6.11 2003 SEMIANNUAL DATA SUPPLY WELL, SW9

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	April	September	Mean	Max	Min	LIMIT
1S1	pН	0-14				A	.	<u> </u>
1S2	Temperature	°C						
1S3	Dissolved Oxygen	mg/l						
1S4	Electrical Conductivity	µmhos/cm						1600 ¹
900	Depth to Groundwater	ft						
C15	Total Petroleum Hydrocarbons	μg/l	<60	400	<230	400	<60	
155	Total Dissolved Solids	mg/l	261	230	246	261	230	1000 ²
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	3.24	2.66	2.95	3.24	2.66	10^{3}
205	Nitrite	mg-N/l	< 0.02	<0.02	<0.02	< 0.02	< 0.02	10 ³
257	Sulfate	mg/l	28	26	27	28	26	500 ⁴
301	Chloride	mg/l	20	19	20	20	19	500 4
315	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	1610	<1055	1610	<500	
602	Chloroform	μg/1	<0.5	< 0.5	< 0.5	< 0.5	<0.5	
608	Bromodichloromethane	μg/l	<0.5	< 0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	< 0.5	<0.5	
610	Bromoform	μg/l	<0.5	<0.5	<0.5	< 0.5	<0.5	
723	Sodium	mg/l	25.2	14.6	19.9	25.2	14.6	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.12 2003 ANNUAL DATA SUPPLY WELL, SW9

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	April	September	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<11	<50	
TEST	ANNUAL MRP (METALS)	UNIT	April	September	LIMIT
703	Calcium	mg/l	48.5	38.3	
704	Magnesium	mg/l	8.9	8.0	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.061		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	< 0.05		0.3
714	Lead	mg/l	< 0.002		
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	2.2	<10	
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.046		5
725	Antimony	mg/l	< 0.0005		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.002		0.002
737	Vanadium	mg/l			

TABLE 6.122003 ANNUAL DATASUPPLY WELL, SW9

TEST	ANNUAL MRP	UNIT	April	September	LIMIT
502	(PESTICIDES & PCBs) PP'-DDE				
502	PP'-DDD	μg/l	<0.01		
	PP'-DDT	<u>μg/l</u>	<u><0.01</u> <0.01	<u> </u>	
	Alpha-BHC	μg/l			
	Lindane (Gamma-BHC)		<0.01 <0.01		0.0
	Heptachlor	μg/l	<0.01		0.2
	Heptachlor Epoxide	μg/l μg/l	<0.01		0.01
the second se	Aldrin	$\mu g/l$	<0.01		0.01
	Dieldrin	$\mu g/l$	<0.01		
_	Endrin	$\mu g/l$	<0.01		
_	Toxaphene	μ <u>g</u> /1 μg/1	<0.5		2
	Aroclor 1242	μg/1	<0.1		3
	Aroclor 1254	μg/1	<0.05	<u> </u>	
523	Beta-BHC	μg/1	<0.01		
	Delta-BHC	$\mu g/l$	<0.01		
531	Endosulfan I	μ <u>g</u> /l	<0.01		
	Endosulfan II	μ <u>g</u> /1		<0.01	
	Endosulfan Sulfate	μg/1		<0.1	
	Endrin Aldehyde	$\mu g/l$		<0.01	{
535	Aroclor 1016	$\mu g/l$	<0.1		0.5
	Aroclor 1221	μg/1	<0.1	1	0.5
537	Aroclor 1232	μg/l	<0.1		0.5
	Aroclor 1248	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμ	<0.1	1	0.5
539	Aroclor 1260	μg/l	< 0.1		0.5
540	Technical Chlordane	μ <u>g</u> /l	< 0.05		0.1
	ANNUAL MRP				
TEST	(VOLATILE ORGANICS)	UNIT	April		LIMIT
601	Methylene Chloride	μg/l	<0.5		
603	1,1,1-Trichloroethane	μg/l	< 0.5		_200
604	Carbon Tetrachloride	μg/1	<0.5		0.5
	1,1-Dichloroethene	μg/l	< 0.5		6
606	Trichloroethylene	µg/l	<0.5		5
607	Tetrachloroethylene	μg/l	< 0.5		5
611	Chlorobenzene	μg/l	< 0.5	4	70
	Vinyl Chloride	μg/l	<0.5	-	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μ <u>g</u> /]	<0.5	1	600
	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	<0.5	1	
	p-Dichlorobenzene (1,4-Dichlorobenzene)	μ <u>g/l</u>	<0.5	4	5
	1,1-Dichloroethane	μ <u>g/l</u>	<0.5	4	5
	1,1,2-Trichloroethane	μg/l	<0.5	4	5
	1,2-Dichloroethane	μ <u>g/l</u>	<0.5	4	0.5
	Benzene	μ <u>g/1</u>	<0.5	4	
	Toluene	μ <u>g/l</u>	<0.5	4	150
	Ethyl Benzene	μ <u>g/l</u>	<0.5	4	700
645	Trans-1,2-Dichloroethylene	<u>μg/l</u>	<0.5	4	10
646	Bromomethane	<u>μg/1</u>	<0.5	4	l
647	Chloroethane	<u>μg/l</u>	<0.5 <0.5	4	
1 640	2 Chloroothuluinulathar	μg/l		4	
	2-Chloroethylvinylether		<05		
649	Chloromethane	μg/l	<0.5	-	5
649 650	Chloromethane 1,2-Dichloropropane	μg/l μg/l	<0.5	-	5
649 650 651	Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene	μg/l μg/l μg/l	<0.5 <0.5	-	0.5
649 650 651 652	Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5	•	0.5 0.5
649 650 651 652 653	Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane	μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5	- - - -	0.5
649 650 651 652 653 654	Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane Acrolein	μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <2	•	0.5 0.5
649 650 651 652 653	Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane	μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5	•	0.5 0.5

TABLE 6.12 2003 ANNUAL DATA SUPPLY WELL, SW9

TEST	ANNUAL MRP	UNIT	April	LIMIT
	(BASE/NEUTRAL EXTRACTIBLES)		April	
800	Acenaphthene	μg/l	<1	
801 802	Acenaphthylene	μg/l	<10	
802	AnthraceneBenzidine	μg/l	<10	-
803	Benzo(a)anthracene	μg/l	<5	┥ ┝──┥
805	Benzo(a)pyrene	μg/l	<5	
806	Benzo(b)fluoranthene	μ <u>g/l</u> μg/l	<10 <10	0.2
807	1,12-Benzoperylene	$\mu g/l$	<5	-
808	Benzo(k)fluoranthene	$\mu g/l$	<10	┥ ┝───┥
809	Bis(2-chloroethoxy)methane	$\mu g/l$	<5	
810	Bis(2-Chloroethyl)ether	$\mu g/l$	<1	4
811	Bis(2-chloroisopropyl)ether	μg/l	<2	┥ ┣━━━━┥
812	Bis(2-diethylhexyl)phthalate	μg/l	<5	4
813	4-Bromophenyl Phenyl Ether	μg/l	<5	
814	Butylbenzyl Phthalate	μg/l	<10	1 1
815	2-Chloronaphthalene	μg/l	<10	
	4-Chlorophenyl Phenyl Ether	μg/l	<5	
817	Chrysene	μg/l	<10	
818	1,2,5,6-Dibenzanthracene	μg/l	<10	1
819	1,2-Dichlorobenzene	μg/l	<2	1
820	1,3-Dichlorobenzene	μg/l	<1	
821	1,4-Dichlorobenzene	μg/l	<1	
	3,3'-Dichlorobenzidine	μg/l	<5	
823	Diethyl Phthalate	μg/l	<2	
	Dimethyl Phthalate	μg/l	<2	
	Di-n-Butyl Phthalate	μg/l	<10	
	2,4-Dinitrotoluene	μg/l	<5	
	2,6-Dinitrotoluene	μg/l	<5	
	Di-n-Octyl Phthalate	μg/l	<10	
829	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	μg/l	<1	
	Fluorene	µg/l	<10	
	Hexachlorobenzene	µg/l	<1	
	Hexachlorobutadiene	μg/l	<1	
	Hexachlorocyclopentadiene	μg/l	<5	50
835	Hexachloroethane Indeno(1,2,3-c,d)pyrene	μ <u>g</u> /l	<1	┥ ┝━━┥
	Isophorone	<u>μg/l</u>	<10 <1	┥ ┣━━━┥
	Naphthalene	μ <u>g/l</u>		╡ ┝───┥
		<u>μg/l</u>	<1 <1	┨ ┝───┥
	Nitrobenzene n-Nitrosodimethylamine	μ <u>g/l</u> μg/l	<5	┥ ┝──┥
840	n-Nitrosodi-n-propylamine	μg/1 μg/1	<5	┥ ┝───┥
	Phenanthrene	μg/l μg/l	<5	┥ ┝━━━━┥
	Pyrene	μ <u>g</u> /1 μg/1	<10	┥ ┝──┥
	2,3,7,8-TCDD	μg/1 μg/1	<0.000059	0.00003
	1,2,4-Trichlorobenzene	$\mu g/l$	<5	70
857	n-Nitrosodiphenylamine	μg/1 μg/l	<1	│
	ANNUAL MRP			╽ ┣━━┥
TEST	(ACID EXTRACTIBLES)	UNIT	April	LIMIT
845	2-Chlorophenol	μg/l	<5	┨ ┣━━━┥
	2,4-Dichlorophenol	μg/l μg/l	<5	∫ <u>├</u> ────┤
	2,4-Dimethylphenol	$\mu g/l$	<2	
	2,4-Dinitrophenol	μg/l	<5	11
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμμμμ	<5	۱ ⊢−−−−
	2-Nitrophenol	μ <u>μ</u> g/l	<10	│
	4-Nitrophenol	μg/l	<10	│ ├──┤
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	$\mu g/l$	<1	
	Pentachlorophenol	μg/l	<5	1
	Phenol	μg/l	<1	
	2,4,6-Trichlorophenol		<10	

856 2,4,6-Trichlorophenol EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.13 2003 SEMIANNUAL DATA SUPPLY WELL, SW10

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	May	July	Mean	Max	Min	LIMIT
1S1	pH	0-14					·	
1S2	Temperature	°C						
1S3	Dissolved Oxygen	mg/l						
1S4	Electrical Conductivity	µmhos/cm						1600 ¹
900	Depth to Groundwater	ft						
C15	Total Petroleum Hydrocarbons	μg/l	<60	60	<60	60	<60	
155	Total Dissolved Solids	mg/l	727	732	730	732	727	1000 ²
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	11.9	13.7	12.8	13.7	11.9	10^{3}
205	Nitrite	mg-N/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	10^{3}
257	Sulfate	mg/l	110	99	105	110	99	500 ⁴
301	Chloride	mg/l	119	123	121	123	119	500 4
315	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	1010	1040	1025	1040	1010	
602	Chloroform	μg/l	<0.5	<0.5	<0.5	<0.5	< 0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	< 0.5	< 0.5	
610	Bromoform	μg/l	<0.5	<0.5	< 0.5	< 0.5	<0.5	
723	Sodium	mg/l	44.6	33.7	39.2	44.6	33.7	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

.

TABLE 6.14 2003 ANNUAL DATA SUPPLY WELL, SW10

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	May	July	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<11	<11	
TEST	ANNUAL MRP (METALS)	UNIT	May	July	LIMIT
703	Calcium	mg/l	150	160	
704	Magnesium	mg/l	31.6	33.4	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.237		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	< 0.05		0.3
714	Lead	mg/l	0.002		
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	4.2	4.6	
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.048		5
725	Antimony	mg/l	0.0015		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l			

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

.....

TABLE 6.14 2003 ANNUAL DATA SUPPLY WELL, SW10

	ANNUAL MRP	LOUT		
TEST	(PESTICIDES & PCBs)	UNIT	May	LIMIT
502	PP'-DDE	μg/l	< 0.01	
504	PP'-DDD	μg/l	< 0.01	
	PP'-DDT	μg/l	< 0.01	
508	Alpha-BHC	μg/l	<0.01	
	Lindane (Gamma-BHC)	μg/1	< 0.01	0.2
	Heptachlor	μg/l	< 0.01	0.01
511	Heptachlor Epoxide	μg/l	< 0.01	0.01
512	Aldrin	μg/l	< 0.01	┥ ┝━━━┥
	Dieldrin	μg/l	< 0.01	
	Endrin	μg/l	< 0.01	2
515	Toxaphene	μg/l	<0.5	3
519	Aroclor 1242	<u>μg/l</u>	<0.1	{
520	Aroclor 1254	μg/l	<0.05	· · · · · · · · · · · · · · · · · · ·
523	Beta-BHC	<u>μg/l</u>	<0.01	┥ ┝━━━━
	Delta-BHC	<u>μg/l</u>	<0.01	┨ ┝━━━┥
531	Endosulfan I	μ <u>g</u> /]		┦ ┝───
532	Endosulfan II	<u>μg/l</u>	<0.01	{
533	Endosulfan Sulfate	<u>μg/l</u>	<0.1	┨ ┣━━━┥
534	Endrin Aldehyde	<u>μg/l</u>	<0.01	
535	Aroclor 1016	<u>μg/l</u>	<0.1	0.5
536	Aroclor 1221	μg/l	<0.1	0.5
537	Aroclor 1232	μg/l	<0.1	0.5
<u>538</u> 539	Aroclor 1248	<u>μg/l</u>	<0.1	0.5
539	Aroclor 1260 Technical Chlordane	μg/l μg/l	<0.05	0.1
	ANNUAL MRP	μg/1		
TEST	(VOLATILE ORGANICS)	UNIT	May	LIMIT
601	Methylene Chloride	μg/l	<0.5	
603	1,1,1-Trichloroethane	μg/ì	< 0.5	200
604	Carbon Tetrachloride	μg/l	<0.5	0.5
605	1,1-Dichloroethene	μg/l	< 0.5	6
606	Trichloroethylene	<u>μg/1</u>	<0.5	5
607	Tetrachloroethylene	μ <u>g</u> /l	<0.5	5
611	Chlorobenzene	μg/l	<0.5	70
612	Vinyl Chloride	ug/l	<0.5	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	µg/l	<0.5	600
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	<0.5	
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	<u>μg/l</u>	<0.5	5
616	1,1-Dichloroethane	μg/l	<u><0.5</u> <0.5	- 5
	1,1,2-Trichloroethane	μg/1	<0.5	0.5
619	1,2-Dichloroethane	μg/l	<0.5	
620	Benzene	μg/l	<0.5	150
621	Toluene	<u>μg/1</u>	<0.5	700
624	Ethyl Benzene	<u>μg/l</u>	<0.5	$-\frac{700}{10}$
645	Trans-1,2-Dichloroethylene	μg/l μg/l	<0.5	
646	Bromomethane	μg/1 μg/1	<0.5	┥ ┝───
647	Chloroethane 2-Chloroethylvinylether	μg/1 μg/1	<0.5	┥ ┝───
<u>648</u> 649	Chloromethane	μg/l	<0.5	┨ ┝────
	1,2-Dichloropropane	μ <u>g</u> /l μg/l	<0.5	
651	Cis-1,3-Dichloropropene	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμ	<0.5	0.5
652	Trans-1,3-Dichloropropene	μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	<0.5	0.5
653	1,1,2,2-Tetrachloroethane	$\mu g/l$	<0.5	1 <u> ī</u>
654	Acrolein	μg/1	<2	1
655	Acrylonitrile	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμ	<2	1 1
662	Methyl Tertiary Butyl Ether	μg/l	< 0.5	1
002	Internyi Ternary Butyi Ether	$\mu E/1$	-0.0	

TABLE 6.14 2003 ANNUAL DATA SUPPLY WELL, SW10

TEST	ANNUAL MRP	UNIT	May	LIMIT
	(BASE/NEUTRAL EXTRACTIBLES)			
800	Acenaphthene	μg/l	<1	
	Acenaphthylene	μg/l	<10	
802 803	Anthracene	μg/l	<10	
	Benzidine Benzo(a)anthracene	μg/l	<5 <5	
	Benzo(a)pyrene	μg/l μg/l	<10	0.2
	Benzo(b)fluoranthene	μg/1 μg/l	<10	0.2
	1,12-Benzoperylene	μg/l	<5	
	Benzo(k)fluoranthene	μ <u>μ</u> g/l	<10	
	Bis(2-chloroethoxy)methane	μg/l	<5	
	Bis(2-Chloroethyl)ether	μg/l	<1	
	Bis(2-chloroisopropyl)ether	μg/l	<2	
	Bis(2-diethylhexyl)phthalate	μg/l	<5	4
	4-Bromophenyl Phenyl Ether	μg/l	<5	
	Butylbenzyl Phthalate	μg/l	<10	
	2-Chloronaphthalene	μg/l	<10	
816	4-Chlorophenyl Phenyl Ether	μg/l	<5	
817	Chrysene	μg/l	<10	
818	1,2,5,6-Dibenzanthracene	μ <u>g</u> /l	<10	
	1,2-Dichlorobenzene	μg/l	<2	
820	1,3-Dichlorobenzene	μg/l	<1	
821	1,4-Dichlorobenzene	μg/l	<1	
822	3,3'-Dichlorobenzidine	μg/l	<5	
	Diethyl Phthalate	μg/l	<2	
	Dimethyl Phthalate	μg/l	<2	
825	Di-n-Butyl Phthalate	μg/l	<10	
	2,4-Dinitrotoluene	μg/l	<5	
	2,6-Dinitrotoluene	μg/l	<5	
	Di-n-Octyl Phthalate	μg/l	<10	
	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	µg/l	<1	
831	Fluorene	μg/l	<10	
832	Hexachlorobenzene	μg/l	<1	1
	Hexachlorobutadiene	μg/l	<1	
the second se	Hexachlorocyclopentadiene	μg/l	<5	50
	Hexachloroethane	μg/l	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
	Isophorone	μ <u>g/l</u>	<1	
	Naphthalene	<u>μg/l</u>	<1	
	Nitrobenzene	<u>μg/l</u>	<1	
	n-Nitrosodimethylamine	μg/l	<5 <5	┥ ┝━━━━━
841	n-Nitrosodi-n-propylamine	<u>μg/l</u>	<5	{
<u>842</u> 843	Phenanthrene Pyrene	μg/l μg/l	<10	┨ ┣━━━┥
	2,3,7,8-TCDD	μg/1 μg/1	<0.000044	0.00003
	1,2,4-Trichlorobenzene	μ <u>g</u> /l	<5	70
840	n-Nitrosodiphenylamine	<u>μg/1</u>	<1	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
	ANNUAL MRP			<u>ا</u>
TEST	(ACID EXTRACTIBLES)	UNIT	May	LIMIT
845	2-Chlorophenol	μg/l	<5	┨ ┣━━━━┤
	2.4-Dichlorophenol	μg/l	<5	1
	2,4-Dimethylphenol	μg/1	<2	1
	2,4-Dinitrophenol	μg/1 μg/1	<5	
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l	<5	1
	2-Nitrophenol	μg/l	<10	1
	4-Nitrophenol	μg/1	<10	1
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/l	<1	1
854	Pentachlorophenol	μ <u>μ</u> ς/1 μg/1	<5	
855	Phenol	μg/1 μg/1	<1	
856	2,4,6-Trichlorophenol	μg/1 μg/1	<10	1
	1-, .,			

TABLE 6.15 2003 SEMIANNUAL DATA SUPPLY WELL, SWH2

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	May	LIMIT
1\$1	pH	0-14		
<u>1S2</u>	Temperature	°C		
1S3	Dissolved Oxygen	mg/l		
1S4	Electrical Conductivity	µmhos/cm		1600 ¹
900	Depth to Groundwater	ft		
C15	Total Petroleum Hydrocarbons	μg/l	<60	
155	Total Dissolved Solids	mg/l	162	1000 ²
201	Ammonia	mg-N/l	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	
204	Nitrate	mg-N/l	0.53	10^{3}
205	Nitrite	mg-N/l	<0.02	10^{3}
257	Sulfate	mg/l	18	500 ⁴
301	Chloride	mg/l	11	500 ⁴
315	MBAS	mg/l	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	
602	Chloroform	μg/l	<0.5	
608	Bromodichloromethane	μg/l	<0.5	
609	Dibromochloromethane	μg/l	<0.5	
610	Bromoform	μg/1	<0.5	
723	Sodium	mg/l	35.8	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

.

TABLE 6.16 2003 ANNUAL DATA SUPPLY WELL, SWH2

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	May	LIMIT
206	Total Cyanides	μg/l	<5	200
312	Total Phenols	μg/l	51	
TEST	ANNUAL MRP (METALS)	UNIT	May	LIMIT
703	Calcium	mg/l	22.8	
704	Magnesium	mg/l	0.96	
705	Arsenic	mg/l	0.001	0.05
706	Barium	mg/l	0.021	1
707	Aluminum	mg/l		1
708	Cadmium	mg/l	< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	0.05
711	Cobalt	mg/l		
712	Copper	mg/l	<0.008	1
713	Iron	mg/l	< 0.05	0.3
714	Lead	mg/l	0.002	
716	Manganese	mg/l	< 0.005	0.05
717	Mercury	mg/l	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	0.1
719	Potassium	mg/l	1	
720	Selenium	mg/l	< 0.001	0.05
722	Silver	mg/l	< 0.025	0.1
724	Zinc	mg/l	0.043	5
725	Antimony	mg/l	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	0.004
732	Molybdenum	mg/l	-	
734	Thallium	mg/l	< 0.001	0.002
737	Vanadium	mg/l		

	<0.5	μ <u>g/</u> 1	Methyl Tertiary Butyl Ether	662
	<2	μ <u>α</u> /Ι	Acrylonitrile	655
	<2	μ <u>α</u> /1	Acrolein	654
1	<0.5	μ <u>α</u> /Ι	1,1,2,2-Tetrachloroethane	653
0.5	<0.5	μ <u>g</u> /1	Trans-1,3-Dichloropropene	652
0.5	<0.5	1/811	Cis-1,3-Dichloropropene	651
5	<0.5	l/ãn	1.2-Dichloropropane	650
	<0.5	μ <u></u> 2/1	Chloromethane	649
	-0.5	l/ăn	2-Chloroethylvinylether	648
	<0.5	ן/an	Chloroethane	647
	<0.5	μ <u>g</u> /l	Bromomethane	646
10	<0.5	ا/عµ	Trans-1,2-Dichloroethylene	645
700	<0.5	μ <u>α</u> /]	Ethyl Benzene	624
150	<0.5	μ <u>σ</u> /1	Toluene	621
	5 0>	110/1	Benzene	630
0,5	<0.5	μ <u>ε/</u> 1	1.2-Dichloroethane	619
s	<0.5	μ <u>α/</u>	1.1.2-Trichloroethane	819
S I	<0.5	119/1	1 1-Dichloroethane	919
2	<0 5	110/1	n-Dichlorohenzene (1 4-Dichlorohenzene)	513 1
000	<0 s	1/2/1	Dichlorohenzene (13-Dichlorohenzene)	C10
600	<0 <	1/2/1	- Dichlorohenzene (1 2-Dichlorohenzene)	210
0,5	<0 <	10/1	Vinvl Chloride	11
71	<0 <	11/0/1	Chlorohenzene	119
<u> </u>	<0.5 <0.5	1/ <u>g</u> /l	Tataohlo-oathulono	000
0	20 S	1/g/l	1, 1-Dicnioroethene	ίνο Ο
0.0	20 C	<u>µg/1</u>	Carbon Jetrachioride	602
200	C.U>	ug/1	1,1,1-1 richloroetnane	001
3	<0.5	<u> /an</u>	Methylene Chloride	601
LIMIT	May	UNIT		TEST
0.1	<0.05	1/gu	I echnical Chlordane	540
0.0	<0.1	Ϊ/än	Arocior 1200	239
0.0	<0.1	μ <u>α</u> /Ι	Arocior 1248	000
0.5	<0.1	1/g/l	Aroclor 1232	150
0.5	<0.1	1/211	Aroclor 1221	536
0.5	<0.1	1/gu	Aroclor 1016	535
	<0.01	μ <u>g</u> /l	Endrin Aldehyde	534
	<0.1	1/an	Endosulfan Sulfate	533
	<0.01	µg/l	Endosulfan II	532
	<0.01	ا/gµ	Endosulfan I	531
	<0.01	μ <u>ε</u> /ι	Delta-BHC	524
T	<0.01	110/1	Beta-BHC	523
T	<0.1	110/1	Anolor 1242	510
L.	< <u>0.5</u>	<u>µg/1</u>	1 oxapnene	\$10
2	<0.01	1/8/1	Endrin	14
	<0.01	μg/l	Dieldrin	513
	<0.01	µg/1	Aldrin	512
0.01	<0.01	μ <u>g</u> /]	Heptachlor Epoxide	511
0.01	<0.01	ug/l	Heptachlor	510
0.2	<0.01	μ <u>g</u> /1	Lindane (Gamma-BHC)	509
	0.01	ns/l	Alpha-BHC	508
	<0.01	ug/l	PP'-DDT	506
	<0.01		PP'-DDD	504
				c02
LIMIT	May	UNIT	ANNUAL MRP	TEST

TABLE 6.16 2003 ANNUAL DATA SUPPLY WELL, SWH2

TEST	ANNUAL MRP (BASE/NEUTRAL EXTRACTIBLES)	UNIT	May	LIMIT
800	Acenaphthene	μg/l	<1	
801	Acenaphthylene	μg/l	<10	
802	Anthracene	μg/l	<10	
803	Benzidine	μ <u>μ</u> μμ	<5	
804	Benzo(a)anthracene	μg/l	<5	
805	Benzo(a)pyrene	μg/1 μg/1	<10	0.2
806	Benzo(b)fluoranthene	μg/l	<10	
807	1,12-Benzoperylene	μg/l	<5	
808	Benzo(k)fluoranthene	μg/l	<10	
	Bis(2-chloroethoxy)methane	μg/l	<5	
	Bis(2-Chloroethyl)ether	μg/l μg/l	<1	
	Bis(2-chloroisopropyl)ether		<2	
	Bis(2-diethylhexyl)phthalate	<u>μg/l</u>	<5	4
		<u>μg/l</u>	<5	
	4-Bromophenyl Phenyl Ether	μ <u>g/l</u>		
	Butylbenzyl Phthalate	<u>μg/l</u>	<10	
815	2-Chloronaphthalene	<u>μα/l</u>	<10	
	4-Chlorophenyl Phenyl Ether	μg/l	<5	
817	Chrysene	μ <u>g/l</u>	<10	
	1,2,5,6-Dibenzanthracene	µg/l	<10	
	1,2-Dichlorobenzene	μg/l	<2	
820	1,3-Dichlorobenzene	μg/l	<1	
821	1,4-Dichlorobenzene	µg/l	<1	
822	3,3'-Dichlorobenzidine	μg/l	<5	
823	Diethyl Phthalate	μg/l	<2	
824	Dimethyl Phthalate	μg/l	<2	
825	Di-n-Butyl Phthalate	μg/1	<10	
826	2,4-Dinitrotoluene	μg/l	<5	
	2,6-Dinitrotoluene	μg/l	<5	
	Di-n-Octyl Phthalate	µg/l	<10	
	1,2-Diphenylhydrazine	μg/l	<1	
	Fluoranthene	μg/l	<1	
831	Fluorene	μg/l	<10	
	Hexachlorobenzene	μg/l	<1	1
	Hexachlorobutadiene	μg/l	<1	
834	Hexachlorocyclopentadiene	μg/l	<5	50
	Hexachloroethane	μg/l	<1	
836	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
	Isophorone	μg/l	<10	
			<1	
839	Naphthalene	<u>μg/l</u>	<1	
	Nitrobenzene	<u>μg/l</u>	<5	
840	n-Nitrosodimethylamine	μg/l		
841	n-Nitrosodi-n-propylamine	μg/l	<5	
842	Phenanthrene	μg/l	<10	
843	Pyrene	μg/l		
	2,3,7,8-TCDD	<u>μg/l</u>	<0.000049	0.00003
846	1,2,4-Trichlorobenzene	μg/l	<5	70
857	n-Nitrosodiphenylamine	µg/l	<1	
TEST	ANNUAL MRP	UNIT	May	LIMIT
L	(ACID EXTRACTIBLES)			
845	2-Chlorophenol	μg/l	<5	
847	2,4-Dichlorophenol	μg/l	<5	
848	2,4-Dimethylphenol	μg/l	<2	
		μg/l	<5	
849	2,4-Dinitrophenol			
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l	<5	
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)		<5	
850 851	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol) 2-Nitrophenol	μg/l μg/l		
850 851 852	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol) 2-Nitrophenol 4-Nitrophenol	μg/l μg/l μg/l	<10	
850 851 852 853	 2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol) 2-Nitrophenol 4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol) 	μ <u>g/l</u> μ <u>g/l</u> μ <u>g/l</u> μ <u>g/l</u>	<10 <10 <1	1
850 851 852	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol) 2-Nitrophenol 4-Nitrophenol	μg/l μg/l μg/l	<10 <10	1

TABLE 6.17 2003 SEMIANNUAL DATA MONITORING WELL, MW1

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	October	December	Mean	Max	Min	LIMIT
1 <u>S</u> 1	pH	0-14	6.74	7.08	7.52	7.11	7.52	6.74	
1 <u>S</u> 2	Temperature	°C	19.82	19.8	19.56	19.7	19.82	19.56	
1S3	Dissolved Oxygen	mg/l	0.67	0.86	1.28	0.94	1.28	0.67	
<u>1S</u> 4	Electrical Conductivity	µmhos/cm	229	239	216	228	239	216	1600 ^T
900	Depth to Groundwater	ft	343.46	343.06	342.85	343.12	343.46	342.85	
C15	Total Petroleum Hydrocarbons	μg/l	540	360		450	540	360	
155	Total Dissolved Solids	mg/l	151	110	174	195	300	110	1000^{2}
201	Ammonia	mg-N/l	< 0.1	<0.01		< 0.1	<0.1	< 0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1		<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	0.28	< 0.04	< 0.04	< 0.75	2.18	< 0.04	10 ³
205	Nitrite	mg-N/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	10^{3}
257	Sulfate	mg/l	17	18.6		42	66	18.6	500 ⁴
301	Chloride	mg/l	3.3	2.6		19	36	2.6	500 ⁴
315	MBAS	mg/l	<0.1	<0.1		< 0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	730	940		835	940	730	
602	Chloroform	μg/l	<0.5	< 0.5		<0.5	<0.5	< 0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5		< 0.5	<0.5	< 0.5	
609	Dibromochloromethane	μg/l	< 0.5	<0.5		< 0.5	< 0.5	< 0.5	
	Bromoform	μg/l	<0.5	<0.5		< 0.5	<0.5	< 0.5	
723	Sodium	mg/l	19.3	10.5		14.9	19.3	10.5	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.18 2003 ANNUAL DATA MONITORING WELL, MW1

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	June	October		LIMIT
206	Total Cyanides	μg/l	<5		1	200
312	Total Phenols	μg/l	<11	<11		
TEST	ANNUAL MRP (METALS)	UNIT	June	October	December	LIMIT
_703	Calcium	mg/l	24	24.3	i	1
704	Magnesium	mg/l	4.81	5.6		
705	Arsenic	mg/l	< 0.001			0.05
_706	Barium	mg/l	0.044			1
707	Aluminum	mg/l			< 0.05	1
708	Cadmium	mg/l	< 0.0004			0.005
709	Total Chromium	mg/l	< 0.01			0.05
	Cobalt	mg/l			< 0.01	
712	Copper	mg/l	<0.008			1
713	Iron	mg/l	0.174			0.3
714	Lead	mg/l	< 0.002			
716	Manganese	mg/l	< 0.005			0.05
717	Mercury	mg/l	<0.00004			0.002
718	Nickel	mg/l	< 0.02			0.1
719	Potassium	mg/l	1.8	<10		
720	Selenium	mg/l	< 0.001			0.05
722	Silver	mg/l	< 0.025			0.1
724	Zinc	mg/l	0.036			5
725	Antimony	mg/l	0.001			0.006
726	Beryllium	mg/l	<0.0005	_		0.004
732	Molybdenum	mg/l			< 0.04	
734	Thallium	mg/l	< 0.001			0.002
737	Vanadium	mg/l			< 0.02	

a construction of the second second

TABLE 6.18 2003 ANNUAL DATA MONITORING WELL, MW1

	ANNUAL MRP		
TEST	(PESTICIDES & PCBs)	UNIT	June
502	PP'-DDE	μg/l	<0.01
504	PP'-DDD	μ <u>g/l</u>	<0.01
506	PP'-DDT	$\mu g/l$	<0.01
508	Alpha-BHC	$\mu g/l$	< 0.01
	Lindane (Gamma-BHC)	μg/l	< 0.01
510	Heptachlor	μg/l	< 0.01
511	Heptachlor Epoxide	μg/l	< 0.01
512	Aldrin	μg/1	< 0.01
513	Dieldrin	μg/l	< 0.01
514	Endrin	μg/l	< 0.01
515	Toxaphene	μg/l	<0.5
519	Aroclor 1242	μg/1	<0.1
520	Aroclor 1254	μg/1	< 0.05
523	Beta-BHC	μg/l	< 0.01
524	Delta-BHC	μg/l	<0.01
531	Endosulfan I	μg/l	<0.01
532	Endosulfan II	μg/l	<0.01
533	Endosulfan Sulfate	μg/l	<0.1
534	Endrin Aldehyde	<u>μg/1</u>	<0.01
535	Aroclor 1016	μg/l	<0.1
536	Aroclor 1221	<u>μg/l</u>	<0.1
537	Aroclor 1232	μg/l	<0.1
538	Aroclor 1248	μg/l	<0.1
539	Aroclor 1260	μg/l	<0.1
540	Technical Chlordane	μg/l	<0.05
гезт	ANNUAL MRP (VOLATILE ORGANICS)	UNIT	June
601	Methylene Chloride	μg/l	< 0.5
603	1,1,1-Trichloroethane	μg/l	<0.5
604	Carbon Tetrachloride	μg/l	<0.5
605	1,1-Dichloroethene	μg/l	<0.5
606	Trichloroethylene	μg/l	<0.5
607	Tetrachloroethylene	μg/l	<0.5
611	Chlorobenzene	μg/l	<0.5
612	Vinyl Chloride	μg/l	<0.5
613	o-Dichlorobenzene (1,2-	μg/l	<0.5
614	m-Dichlorobenzene (1,3-	μg/l	<0.5
615	p-Dichlorobenzene (1,4-	μg/l	<0.5
616	1,1-Dichloroethane	μg/l	<0.5
618	1,1,2-Trichloroethane	μg/l	<0.5
619	1,2-Dichloroethane	μg/l	<0.5
620	Benzene	μg/l	<0.5
621	Toluene	μg/l	<0.5
624	Ethyl Benzene	μg/l	<0.5
645	Trans-1,2-Dichloroethylene	μg/l	<0.5
646	Bromomethane	μg/l	<0.5
647	Chloroethane	μg/l	<0.5
648	2-Chloroethylvinylether	μg/l	<0.5
649	Chloromethane	μg/l	<0.5
650	1,2-Dichloropropane	μg/l	<0.5
651	Cis-1,3-Dichloropropene	μg/l	<0.5
652	Trans-1,3-Dichloropropene	μg/l	<0.5
		1 1/2/1	<0.5
653	1,1,2,2-Tetrachloroethane	μg/l	
653 654	Acrolein	μg/l	<2
653			

LIMIT	-
	_
	-
	-
0.2	
0.01	
0.01	
2	_
3	-
	-
	_
0.5	
0.5	-
0.5	
0.5	
0.5	
0.1	
LIMIT	
	-
200	-
0.5	
6	_
5	
<u> </u>	
0.5	
600	-
000	
5	
5	
5	
0.5	
1 150	-
700	
10	
10	
10	-
10	
	1
10	
5	
5 0.5	
5 0.5 0.5	
5 0.5	
5 0.5 0.5	

TABLE 6.18 2003 ANNUAL DATA MONITORING WELL, MW1

TEST(BASE/NEUTRAL EXTRACTIBLES)UNITJune800Acenaphthylene $\mu g/l$ <1801Acenaphthylene $\mu g/l$ <10802Anthracene $\mu g/l$ <10803Benzola)anthracene $\mu g/l$ <5804Benzola)anthene $\mu g/l$ <5805Benzola)pyrene $\mu g/l$ <5806Benzola)chiluoranthene $\mu g/l$ <5807Bis(2-chloroethoxy)methane $\mu g/l$ <5808Benzolchloroethoxy)methane $\mu g/l$ <5810Bis(2-chloroethoxy)methane $\mu g/l$ <5811Bis(2-chloroethoxy)methane $\mu g/l$ <58134-Bromopheny l Phenyl Ether $\mu g/l$ <108132-Chloroaphotylpether $\mu g/l$ <10814Butylberzyl Phthalate $\mu g/l$ <108152-Chloroaphnthalene $\mu g/l$ <108164-Chlorophenyl Phenyl Ether $\mu g/l$ <108181.2.5.6-Dibenzanthracene $\mu g/l$ <108181.2.5.6-Dibenzanthracene $\mu g/l$ <28201.3-Dichlorobenzene $\mu g/l$ <28211.4-Dichlorobenzene $\mu g/l$ <2822Din-n-Butyl Phthalate $\mu g/l$ <10823Diethyl Phthalate $\mu g/l$ <10824Dinethyl Phthalate $\mu g/l$ <10825Di-n-Dutyl Phthalate $\mu g/l$ <108262.4-Dinitrotoluene $\mu g/l$ <108		ANNUAL MRP		
800 Acenaphthylene $\mu g/l$ <1	TEST	(BASE/NEUTRAL EXTRACTIBLES)	UNIT	June
802 Anthracene $\mu g/l$ <10	800			
803 Benzo(a)anthracene $\mu g/l$ <5				<10
804 Benzo(a)anthracene $\mu g/l$ <5				
805 Benzo(a)prene $\mu g/l$ <10 806 Benzo(b)fluoranthene $\mu g/l$ <10				
806 Benzo(b)fluoranthene $\mu g/l$ <10 807 1,12-Benzoperylene $\mu g/l$ <5				
807 1,12-Benzo(s)fluoranthene $\mu g/l$ <5				
808 Benzo(k)fluoranthene $\mu g/l$ <10 809 Bis(2-chloroethoxy)methane $\mu g/l$ <5				- D'P distance in the second sec
809 Bis(2-chlorosethoxy)methane $\mu g/l$ <5			r r	
810 Bis(2-Chloroethyl)ether $\mu g/l$ <1			1	
811 Bis(2-chloroisopropyl)ether $\mu g/l$ <2 812 Bis(2-diethylhexyl)phthalate $\mu g/l$ <5				
812 Bis(2-diethylhexyl)phthalate $\mu g/l$ <5				
813 4-Bromophenyl Phenyl Ether $\mu g/l$ <10				
814 Butylbenzyl Phthalate $\mu g/l$ <10	A COMPANY OF THE OWNER OF THE OWNE			
815 2-Chloronaphthalene $\mu g/l$ <10			1	
816 4-Chlorophenyl Phenyl Ether $\mu g/l$ <5				
817 Chrysene $\mu g/l$ <10				
818 1,2,5,6-Dibenzanthracene $\mu g/l$ <10				
8191,2-Dichlorobenzene $\mu g/l$ <28201,3-Dichlorobenzene $\mu g/l$ <1				
820 1,3-Dichlorobenzene $\mu g/l$ <1				
821 1,4-Dichlorobenzene $\mu g/l$ <1	the second s			
822 3,3'-Dichlorobenzidine $\mu g/l$ <5				<1
823 Diethyl Phthalate $\mu g/l$ <2				<5
824 Dimethyl Phthalate $\mu g/l$ <2				<2
826 2,4-Dinitrotoluene $\mu g/l$ <5	824	Dimethyl Phthalate		<2
826 2,4-Dinitrotoluene $\mu g/l$ <5	825	Di-n-Butyl Phthalate		<10
828 Di-n-Octyl Phthalate $\mu g/l$ <10	826	2,4-Dinitrotoluene		<5
829 1,2-Diphenylhydrazine $\mu g/l$ <1 830 Fluoranthene $\mu g/l$ <1	827	2,6-Dinitrotoluene	μg/l	
830 Fluoranthene $\mu g/l$ <1 831 Fluorene $\mu g/l$ <10		Di-n-Octyl Phthalate		
B31 Fluorene $\mu g/l$ <10				
B32 Hexachlorobenzene $\mu g/l$ <1				
833 Hexachlorobutadiene $\mu g/l$ <1 834 Hexachlorocyclopentadiene $\mu g/l$ <5				
B34 Hexachlorocyclopentadiene $\mu g/l$ <5 835 Hexachlorocyclopentadiene $\mu g/l$ <1	and the second division of the second divisio			
835 Hexachloroethane $\mu g/l$ <1				
836 Indeno(1,2,3-c,d)pyrene $\mu g/l$ <10				
837 Isophorone $\mu g/l$ <1				
838Naphthalene $\mu g/l$ <1839Nitrobenzene $\mu g/l$ <1				
839 Nitrobenzene $\mu g/l$ <1				
840 n-Nitrosodimethylamine $\mu g/l$ <5				
841 n-Nitrosodi-n-propylamine $\mu g/l$ <5 842 Phenanthrene $\mu g/l$ <5 843 Pyrene $\mu g/l$ <10 844 2,3,7,8-TCDD $\mu g/l$ <0.00008 846 1,2,4-Trichlorobenzene $\mu g/l$ <0.00008 846 1,2,4-Trichlorobenzene $\mu g/l$ <5 857 n-Nitrosodiphenylamine $\mu g/l$ <1 ANNUAL MRP MEXTRACTIBLES) $\mu g/l$ <1 ANNUAL MRP (ACID EXTRACTIBLES) $\mu g/l$ <5 845 2-Chlorophenol $\mu g/l$ <5 847 2,4-Dichlorophenol $\mu g/l$ <5 848 2,4-Dimethylphenol $\mu g/l$ <2 849 2,4-Dinitrophenol $\mu g/l$ <5 850 2-Methyl-4,6-Dinitrophenol (p-Chloro-m $\mu g/l$ <10 852 4-Nitrophenol $\mu g/l$ <10 853 4-Chloro-3-Methylphenol (4,6-Dinitro-o- $\mu g/l$ <1 854 Pentachlorophenol μ				
842 Phenanthrene $\mu g/l$ <5 843 Pyrene $\mu g/l$ <10		n-Nitrosodi-n-propylamine		
843 Pyrene $\mu g/l$ <10				
844 $2,3,7,8$ -TCDD $\mu g/l$ <0.00008 846 $1,2,4$ -Trichlorobenzene $\mu g/l$ <5 857 n-Nitrosodiphenylamine $\mu g/l$ <1 TEST ANNUAL MRP $(ACID EXTRACTIBLES)$ $UNIT$ June 845 2-Chlorophenol $\mu g/l$ <5 847 $2,4$ -Dichlorophenol $\mu g/l$ <5 848 $2,4$ -Dinethylphenol $\mu g/l$ <5 849 $2,4$ -Dinitrophenol $\mu g/l$ <5 850 2 -Methyl- $4,6$ -Dinitrophenol (p-Chloro-m $\mu g/l$ <5 851 2 -Nitrophenol $\mu g/l$ <10 852 4 -Nitrophenol $\mu g/l$ <10 853 4 -Chloro- 3 -Methylphenol ($4,6$ -Dinitro- $-\mu g/l$ <1 854 Pentachlorophenol $\mu g/l$ <5 855 Phenol $\mu g/l$ <1				
8461,2,4-Trichlorobenzene $\mu g/l$ <5857n-Nitrosodiphenylamine $\mu g/l$ <1				
857n-Nitrosodiphenylamine $\mu g/l$ <1TESTANNUAL MRP (ACID EXTRACTIBLES)UNITJune8452-Chlorophenol $\mu g/l$ <5		1.2.4-Trichlorobenzene		
Normality $\mu_{g/1}$ $\mu_{g/1}$ TESTANNUAL MRP (ACID EXTRACTIBLES)UNITJune8452-Chlorophenol μ_g/l <5				
TEST (ACID EXTRACTIBLES)UNI1June8452-Chlorophenol $\mu g/l$ <5				
845 2-Chlorophenol $\mu g/l$ <5 847 2,4-Dichlorophenol $\mu g/l$ <5	TEST		UNIT	June
847 2,4-Dichlorophenol $\mu g/l$ <5	845		μg/l	<5
848 $2,4$ -Dimethylphenol $\mu g/l$ <2 849 $2,4$ -Dinitrophenol $\mu g/l$ <5 850 2 -Methyl-4,6-Dinitrophenol (p-Chloro-m $\mu g/l$ <5 851 2 -Nitrophenol $\mu g/l$ <10 852 4 -Nitrophenol $\mu g/l$ <10 853 4 -Chloro-3-Methylphenol (4,6-Dinitro-o- $\mu g/l$ <1 854 Pentachlorophenol $\mu g/l$ <5 855 Phenol $\mu g/l$ <1				
849 $2,4$ -Dinitrophenol $\mu g/l$ <5 850 2 -Methyl-4,6-Dinitrophenol (p-Chloro-m $\mu g/l$ <5 851 2 -Nitrophenol $\mu g/l$ <10 852 4 -Nitrophenol $\mu g/l$ <10 853 4 -Chloro-3-Methylphenol (4,6-Dinitro-o- $\mu g/l$ <1 854 Pentachlorophenol $\mu g/l$ <5 855 Phenol $\mu g/l$ <1				
8502-Methyl-4,6-Dinitrophenol (p-Chloro-m $\mu g/l$ <58512-Nitrophenol $\mu g/l$ <10				
8512-Nitrophenol $\mu g/l$ <108524-Nitrophenol $\mu g/l$ <10				
8524-Nitrophenol $\mu g/l$ <108534-Chloro-3-Methylphenol (4,6-Dinitro-o- $\mu g/l$ <1				
8534-Chloro-3-Methylphenol (4,6-Dinitro-o- $\mu g/l$ $\mu g/l$ <1854Pentachlorophenol $\mu g/l$ <5				
854Pentachlorophenolμg/l<5855Phenolμg/l<1				
855 Phenol $\mu g/l$ <1				
				<10

LIMIT
0.2
<u>`</u>
4
L
L]
1
1
50
ļ
1
0.00003
0.00003 70
70
70
70
70
70
70
70
70
70
70
70

L 856 [2,4,6-Trichlorophenol EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.19 2003 SEMIANNUAL DATA MONITORING WELL, MW2

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	April	July	Mean	Max	Min	LIMIT
1S1	pH	0-14	8.24	7.43	7.84	8.24	7.43	
1S2	Temperature	°C	23.7	20.13	21.9	23.7	20.13	
<u>1S3</u>	Dissolved Oxygen	mg/l	0.87	1.03	0.95	1.03	0.87	
<u>1S4</u>	Electrical Conductivity	µmhos/cm	206.4	212	209.2	212	206.4	1600
900	Depth to Groundwater	ft	495.1	506.95	501.0	506.95	495.1	
C15	Total Petroleum Hydrocarbons	μg/l	260	180	220	260	180	
155	Total Dissolved Solids	mg/l	165	132	149	165	132	1000 ²
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
	Kjeldahl Nitrogen	mg-N/l	<0.1	< 0.1	< 0.1	<0.1	<0.1	
	Nitrate	mg-N/l	0.41	< 0.04	< 0.23	0.41	< 0.04	10 ³
205	Nitrite	mg-N/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	10 ³
257	Sulfate	mg/l	17	21.1	19	21.1	17	500 4
301	Chloride	mg/l	3	4	4	4	3	500 4
	MBAS	mg/l	<0.1	<0.1	< 0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	760	890	825	890	760	
	Chloroform	μg/l	<0.5	< 0.5	<0.5	<0.5	<0.5	1
608	Bromodichloromethane	μg/l	< 0.5	<0.5	< 0.5	< 0.5	<0.5	
609	Dibromochloromethane	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
	Bromoform	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
723	Sodium	mg/l	41.5	31.8	36.7	41.5	31.8	1

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.20 2003 ANNUAL DATA MONITORING WELL, MW2

TECT	ANNUAL MRP	LINUT		7.1		
TEST	(MISCELLANEOUS)	UNIT	April	July	LIMIT	
206	Total Cyanides	μg/l	<5		200	
312	Total Phenols	μg/l	<50	<11		
TEST	ANNUAL MRP (METALS)	UNIT	April	July	LIMIT	
703	Calcium	mg/l	19.3	21.1		
704	Magnesium	mg/l	2.3	3.45		
705	Arsenic	mg/l	< 0.001		0.05	
706	Barium	mg/l	0.041		1	
707	Aluminum	mg/l			1	
708	Cadmium	mg/l	< 0.0004		0.005	
709	Total Chromium	mg/l	0.024		0.05	
711	Cobalt	mg/l				
712	Copper	mg/l	0.011		1	
713	Iron	mg/l	3.41		0.3	
714	Lead	mg/l	0.002			
716	Manganese	mg/l	0.069		0.05	
717	Mercury	mg/l	< 0.00004		0.002	
718	Nickel	mg/l	< 0.02		0.1	
719	Potassium	mg/l	2	2.9		
720	Selenium	mg/l	< 0.001		0.05	
722	Silver	mg/l	< 0.025		0.1	
724	Zinc	mg/l	0.104		5	
725	Antimony	mg/l	< 0.0005		0.006	
726	Beryllium	mg/l	< 0.0005		0.004	
732	Molybdenum	mg/l				
734	Thallium	mg/l	< 0.001		0.002	
737	Vanadium	mg/l				

...

TABLE 6.20 2003 ANNUAL DATA MONITORING WELL, MW2

TEST	ANNUAL MRP (PESTICIDES & PCBs)	UNIT	April	July	LIMIT
502	PP'-DDE	μg/l	< 0.01		
504	PP'-DDD	μg/l	< 0.01		
506	PP'-DDT	μg/l	<0.01		
508	Alpha-BHC	μg/l	< 0.01		
509	Lindane (Gamma-BHC)	μg/l	<0.01		0.2
510	Heptachlor	μg/l	< 0.01		0.01
511	Heptachlor Epoxide	μg/l	< 0.01		0.01
512	Aldrin	μg/l	< 0.01		
513	Dieldrin	μg/l	< 0.01		
514	Endrin	μg/l	< 0.01	< 0.01	2
515	Toxaphene	μg/l	<0.5		3
519	Aroclor 1242	μg/l	<0.1		
520	Aroclor 1254	μg/l	< 0.05		
523	Beta-BHC	μg/l	< 0.01		
524	Delta-BHC	µg/l	< 0.01		
531	Endosulfan I	μg/l	< 0.01		
532	Endosulfan II	μg/l		< 0.01	
533	Endosulfan Sulfate	μg/l		<0.1	
534	Endrin Aldehyde	μg/l		< 0.01	
535	Aroclor 1016	$\mu g/l$	<0.1		0.5
536	Aroclor 1221	μg/l	<0.1		0.5
537	Aroclor 1232	μg/l	<0.1	· · · · · · · · · · · · · · · · · · ·	0.5
538	Aroclor 1248	μg/l	<0.1		0.5
539	Aroclor 1260	μg/l	<0.1		0.5
540	Technical Chlordane	μg/l	< 0.05	1	0.1
TEST	ANNUAL MRP (VOLATILE ORGANICS)	UNIT	April		LIMIT
601	Methylene Chloride	μg/l	< 0.5	1	
603	1,1,1-Trichloroethane	μg/l	< 0.5	1	200
604	Carbon Tetrachloride	μg/1 μg/l	< 0.5	1	0.5
605	1,1-Dichloroethene	μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u>	< 0.5	1	6
606	Trichloroethylene	μ <u>μ</u> μ <u>μ</u>	< 0.5	1	5
607	Tetrachloroethylene	μ <u>g</u> /l	< 0.5	1	5
611	Chlorobenzene	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμ	< 0.5	1	70
612	Vinyl Chloride	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμμμμμ	< 0.5	1	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμ	< 0.5	1	600
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	$\mu g/l$	< 0.5	1	
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	<0.5	1	5
616	1,1-Dichloroethane	μg/l	< 0.5	1	5
618	1,1,2-Trichloroethane	μ <u>μ</u> /l	< 0.5	1	5
the second se		$\mu g/l$	<0.5	1	0.5
	1,2-Dichloroethane	$\frac{\mu g/l}{\mu g/l}$	<0.5	1	1
620	Toluene	$\mu g/l$	<0.5	1	150
621	Ethyl Benzene	μ <u>g/1</u> μg/l	<0.5	1	700
	Trans-1,2-Dichloroethylene	μ <u>g/1</u> μg/l	<0.5	1	10
	Bromomethane	μ <u>g</u> /l	<0.5	1	1.
	Chloroethane	μ <u>g/1</u> μg/l	<0.5	1	
<u>647</u> 648	2-Chloroethylvinylether	μ <u>g/1</u> μg/1	<0.5	1	
1 04ð	Chloromethane	μg/1	<0.5	1	
			<0.5	1	5
649		1 110/1			
649 650	1,2-Dichloropropane	μg/]		1	
649 650 651	1,2-Dichloropropane Cis-1,3-Dichloropropene	μg/l	<0.5		0.5
649 650 651 652	1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	μg/l μg/l	<0.5 <0.5	4 - -	0.5 0.5
649 650 651 652 653	1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane	μg/l μg/l μg/l	<0.5 <0.5 <0.5		0.5
649 650 651 652	1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	μg/l μg/l	<0.5 <0.5	- - - -	0.5 0.5

TABLE 6.20 2003 ANNUAL DATA MONITORING WELL, MW2

TEST	ANNUAL MRP (BASE/NEUTRAL EXTRACTIBLES)	UNIT	April	July	LIMIT
800	Acenaphthene	μg/l	<1		
801	Acenaphthylene	μg/l	<10		
802	Anthracene	μg/l	<10	·	
	Benzidine	μg/l	<5		
	Benzo(a)anthracene	μg/l	<5		
	Benzo(a)pyrene	μg/l	<10		0.2
	Benzo(b)fluoranthene	$\mu g/l$	<10		
	1,12-Benzoperylene	μg/l	<5		
	Benzo(k)fluoranthene	μg/l	<10		
	Bis(2-chloroethoxy)methane	$\mu g/l$	<5		
	Bis(2-Chloroethyl)ether	μg/l	<1		
811	Bis(2-chloroisopropyl)ether	$\mu g/l$	<2		
812	Bis(2-diethylhexyl)phthalate	μg/1 μg/1	6.5	<2	4
812	4-Bromophenyl Phenyl Ether		<5	~2	+
813	Butylbenzyl Phthalate	μg/l	<10		
		μg/l			
815	2-Chloronaphthalene	μg/l	<10		
	4-Chlorophenyl Phenyl Ether	μg/l	<5		
817	Chrysene	μg/l	<10		
818	1,2,5,6-Dibenzanthracene	μg/l	<10		
	1,2-Dichlorobenzene	μg/l	<2		
820	1,3-Dichlorobenzene	μg/l	<1		
821	1,4-Dichlorobenzene	μg/1	<1		
822	3,3'-Dichlorobenzidine	µg/l	<5		
823	Diethyl Phthalate	μg/l	<2		
824	Dimethyl Phthalate	μg/l	<2		
825	Di-n-Butyl Phthalate	μg/1	<10		
826	2,4-Dinitrotoluene	μg/l	<5		
827	2,6-Dinitrotoluene	μg/l	<5		
828	Di-n-Octyl Phthalate	μg/l	<10		
829	1,2-Diphenylhydrazine	μg/l	<1		
830	Fluoranthene	μg/l	<1		
831	Fluorene	μg/l	<10		
832	Hexachlorobenzene	μg/l	<1		1
833	Hexachlorobutadiene	μg/l	<1		
834	Hexachlorocyclopentadiene	μg/l	<5		50
835	Hexachloroethane	μg/!	<1		
836	Indeno(1,2,3-c,d)pyrene	$\mu g/l$	<10		
837	Isophorone	μg/1	<1		
	Naphthalene	μg/l μg/l	<1		+
	Nitrobenzene	$\mu g/l$	<1		
	n-Nitrosodimethylamine	μg/1 μg/1	<5		
		μg/1 μg/1	<5		+
841	n-Nitrosodi-n-propylamine		<5		
842	Phenanthrene	μ <u>g</u> /l	<10		+
843	Pyrene	μg/l	<0.000094		0.00003
844	2,3,7,8-TCDD	<u>μg/l</u>			70
	1,2,4-Trichlorobenzene	μ <u>g/l</u>	<5		
857	n-Nitrosodiphenylamine	μg/l			
TEST	ANNUAL MRP	UNIT	April		LIMIT
	(ACID EXTRACTIBLES)			4	
845	2-Chlorophenol	μg/l	<5	4	
847	2,4-Dichlorophenol	µg/l	<5	4	<u> </u>
848	2,4-Dimethylphenol	μg/l	<2	4	
	2,4-Dinitrophenol	μg/l	<5	1	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-	μg/l	<5	1	
851	2-Nitrophenol	μg/l	<10	1	
852	4-Nitrophenol	μg/l	<10	1	L
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-	μg/l	<1	1	
854	Pentachlorophenol	μg/l	<5		1
855	Phenol	μg/l	<1		
856	2,4,6-Trichlorophenol			1	
			TECTOFODO		

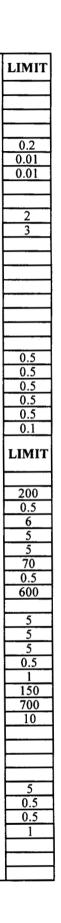
EXHIBIT 1-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.21 2003 SEMIANNUAL DATA MONITORING WELL, MW4

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	March	May	September	October	Mean	Max	Min	LIMIT
1S1	pH	0-14	6.93	6.93	6.73	7.24	6.96	7.24	6.73	
1S2	Temperature	°C	18.1	18.2	18.37	18.43	18.3	18.43	18.1	
1S3	Dissolved Oxygen	mg/l	6.13	1.18	6.76	7.05	5.28	7.05	1.18	
	Electrical Conductivity	µmhos/cm	986	968	1072	1097	1031	1097	968	1600 ¹
900	Depth to Groundwater	ft	271.5	271.26	272.28	271.75	271.7	272.28	271.26	
C15	Total Petroleum Hydrocarbons	μg/l		<50	<50		<50	<50	<50	
155	Total Dissolved Solids	mg/l	634	621	589	637	620	637	589	1000^{2}
201	Ammonia	mg-N/l		<0.1	<0.1		<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l		<0.1	<0.1		<0.1	<0.1	< 0.1	
	Nitrate	mg-N/l	9.93	9.85	10.7	11.2	10.4	11.2	9.85	103
	Nitrite	mg-N/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	10 ³
	Sulfate	mg/l		82	74.1		78	82	74.1	500 ⁴
301	Chloride	mg/l		105	108		107	108	105	500 4
315	MBAS	mg/l		<0.1	<0.1		<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l		910	940		925	940	910	
602	Chloroform	μg/l		<0.5	<0.5		<0.5	<0.5	<0.5	
	Bromodichloromethane	μg/l		<0.5	<0.5		< 0.5	<0.5	< 0.5	
609	Dibromochloromethane	μg/l		<0.5	< 0.5		<0.5	<0.5	<0.5	
	Bromoform	μg/l		<0. <u>5</u>	<0.5		< 0.5	< 0.5	<0.5	
723	Sodium	mg/l		64.8	62.2		63.5	64.8	62.2	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10


TABLE 6.22 2003 ANNUAL DATA MONITORING WELL, MW4

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	May	September	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<13	<50	
TEST	ANNUAL MRP (METALS)	UNIT	May	September	LIMIT
703	Calcium	mg/l	130	110	
704	Magnesium	mg/l	25.2	27.1	
705	Arsenic	mg/l	< 0.001	< 0.001	0.05
706	Barium	· mg/l	0.2	0.194	1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01	< 0.01	0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008	< 0.008	1
713	Iron	mg/l	< 0.05		0.3
714	Lead	mg/l	0.006	< 0.002	
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	< 0.02	0.1
719	Potassium	mg/l	3.8	<10	
720	Selenium	mg/l	<0.001	< 0.001	0.05
722	Silver	mg/l	< 0.025	< 0.025	0.1
724	Zinc	mg/l	0.042	0.055	5
725	Antimony	mg/l	< 0.0005	< 0.0005	0.006
726	Beryllium	mg/l	<0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	<0.001	< 0.001	0.002
737	Vanadium	mg/l			

TABLE 6.22 2003 ANNUAL DATA MONITORING WELL, MW4

TEST	ANNUAL MRP	UNIT	May
	(PESTICIDES & PCBs)	UNII	May
502	PP'-DDE	μg/l	< 0.01
504	PP'-DDD	μg/l	< 0.01
	PP'-DDT	μg/l	< 0.01
508	Alpha-BHC	μg/l	< 0.01
509	Lindane (Gamma-BHC)	μg/1	< 0.01
510	Heptachlor	μg/l	<0.01
511	Heptachlor Epoxide	μg/l	< 0.01
512	Aldrin	μg/l	< 0.01
513	Dieldrin	μg/l	< 0.01
514	Endrin	μg/l	< 0.01
515	Toxaphene	μg/l	<0.5
519	Aroclor 1242	μg/l	<0.1
520	Aroclor 1254	µg/l	< 0.05
523	Beta-BHC	μg/l	< 0.01
524	Delta-BHC	μg/l	< 0.01
531	Endosulfan I	μg/l	< 0.01
532	Endosulfan II	μg/l	< 0.01
533	Endosulfan Sulfate	μg/l	<0.1
534	Endrin Aldehyde	μg/l	< 0.01
535	Aroclor 1016	μg/l	<0.1
536	Aroclor 1221	μg/l	<0.1
537	Aroclor 1232	μg/l	<0.1
538	Aroclor 1248	μg/l	<0.1
539	Aroclor 1260	μg/l	< 0.1
540	Technical Chlordane	μg/l	< 0.05
	ANNUAL MRP		
TEST	(VOLATILE ORGANICS)	UNIT	May
601	Methylene Chloride	μg/l	<0.5
(00			
603	1,1,1-Trichloroethane	μg/l	<0.5
<u>603</u> 604	1,1,1-Trichloroethane Carbon Tetrachloride	μg/l	<0.5
			<0.5 <0.5
604	Carbon Tetrachloride	μg/l	<0.5 <0.5 <0.5
604 605	Carbon Tetrachloride 1,1-Dichloroethene	μg/i μg/l	<0.5 <0.5 <0.5 <0.5
604 605 606	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene	μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5
604 605 606 607	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene	μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
604 605 606 607 611	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
604 605 606 607 611 612	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
604 605 606 607 611 612 613	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
604 605 606 607 611 612 613 614	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
604 605 606 607 611 612 613 614 615	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<0.5
604 605 606 607 611 612 613 614 615 616	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,1,2-Trichloroethane	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 611 612 613 614 615 616 618 619 620	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646 647 648 649	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646 647 648 649 650	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane	μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene	μg/l μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651 652	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	μg/l μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651 652 653	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane	μg/l μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $
604 605 606 607 611 612 613 614 615 616 618 619 620 621 624 645 646 647 648 649 650 651 652	Carbon Tetrachloride 1,1-Dichloroethene Trichloroethylene Tetrachloroethylene Chlorobenzene Vinyl Chloride o-Dichlorobenzene (1,2-Dichlorobenzene) m-Dichlorobenzene (1,3-Dichlorobenzene) p-Dichlorobenzene (1,4-Dichlorobenzene) 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Toluene Ethyl Benzene Trans-1,2-Dichloroethylene Bromomethane Chloroethane 2-Chloroethylvinylether Chloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene	μg/l μg/l	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 $

-

TABLE 6.22 2003 ANNUAL DATA MONITORING WELL, MW4

	ANNUAL MRP			1	
TEST	(BASE/NEUTRAL EXTRACTIBLES)	UNIT	May		LIMIT
800	Acenaphthene	μg/l	<1		
	Acenaphthylene	$\mu g/l$	<10		
	Anthracene	μg/l	<10		
	Benzidine	μg/l	<5		
	Benzo(a)anthracene	µg/l	<5	ĺ	
	Benzo(a)pyrene	μg/l	<10		0.2
	Benzo(b)fluoranthene	μ <u>g/l</u>	<10		
	1,12-Benzoperylene	μg/l	<5		
	Benzo(k)fluoranthene	μg/l	<10		
	Bis(2-chloroethoxy)methane	μg/]	<5 <1		
	Bis(2-Chloroethyl)ether	μg/l μg/l	<2		
	Bis(2-chloroisopropyl)ether Bis(2-diethylhexyl)phthalate	$\frac{\mu g/l}{\mu g/l}$	<5		4
	4-Bromophenyl Phenyl Ether	$\frac{\mu g/l}{\mu g/l}$	<5		
813	Butylbenzyl Phthalate	$\frac{\mu g/l}{\mu g/l}$	<10		
	2-Chloronaphthalene	$\mu g/l$	<10		
	4-Chlorophenyl Phenyl Ether	$\mu g/l$	<5		
817	Chrysene	$\mu g/l$	<10		
818	1,2,5,6-Dibenzanthracene	$\mu g/l$	<10		
819	1,2-Dichlorobenzene	μg/l	<2		
	1,3-Dichlorobenzene	µg/l	<1		
	1,4-Dichlorobenzene	μg/l	<1		
822	3,3'-Dichlorobenzidine	μg/l	<5		
823	Diethyl Phthalate	μg/l	<2		
824	Dimethyl Phthalate	μg/1	<2		
	Di-n-Butyl Phthalate	μg/l	<10		
	2,4-Dinitrotoluene	μg/l	<5		
	2,6-Dinitrotoluene	<u>μg/l</u>	<5		
	Di-n-Octyl Phthalate	μ <u>g/l</u>	<10		L
	1,2-Diphenylhydrazine	μ <u>g/l</u>	<1		
	Fluoranthene	μg/l	<10		
831	Fluorene	μ <u>g/l</u> μ <u>g</u> /l	<1		1
<u>832</u> 833	Hexachlorobenzene Hexachlorobutadiene	$\frac{\mu g/l}{\mu g/l}$	<1		
	Hexachlorocyclopentadiene	$\mu g/l$	<5		50
835	Hexachloroethane	$\mu g/l$	<1		
836	Indeno(1,2,3-c,d)pyrene	$\mu g/l$	<10		
837	Isophorone	μg/l	<1		
	Naphthalene	μg/l	<1		
839	Nitrobenzene	μg/l	<1		
840	n-Nitrosodimethylamine	μ <u>g</u> /l	<5		
841	n-Nitrosodi-n-propylamine	μg/l	<5		
842	Phenanthrene	μg/l	<5		
843	Pyrene	μg/l	<10		
844	2,3,7,8-TCDD	μg/l	<0.000096		0.00003
846	1,2,4-Trichlorobenzene	μ <u>g/l</u>	<5		70
857	n-Nitrosodiphenylamine	µg/l	<1	•	
TEST	ANNUAL MRP	UNIT	May	() () () () () () () () () ()	LIMIT
TEST	(ACID EXTRACTIBLES)		-		L
845	2-Chlorophenol	µg/l	<5	4	
847	2,4-Dichlorophenol	μ <u>g/l</u>	<5	4	
848	2,4-Dimethylphenol	μg/l	<2 <5	4	i
849	2,4-Dinitrophenol	μ <u>g/l</u>	<5	{	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μ <u>g/l</u> μg/l	<10	1	
851	2-Nitrophenol	μg/1 μg/1	<10	1	
852	4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μ <u>g/1</u> μg/1	<1	1	
<u>853</u> 854	Pentachlorophenol	μg/1	<5	1	1
854	Phenol	$\mu g/l$	<1	1	
855	2,4,6-TrichlorophExtHIBIT I-4 TO CITY OF LOS			DISCOVERYO	
0.0	14, T, O THEMOLOPHER MIDTELLE				

TABLE 6.23 2003 SEMIANNUAL DATA MONITORING WELL, MW15

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	September	Mean	Max	Min	LIMIT
1S1	pH	0-14	7.37	6.9	7.1	7.37	6.9	
1S2	Temperature	°C	16.67	17.59	17.13	17.59	16.67	
1S3	Dissolved Oxygen	mg/l	1.46	7.69	4.58	7.69	1.46	
1S4	Electrical Conductivity	µmhos/cm	318	360	339	360	318	1600 ¹
900	Depth to Groundwater	ft	310.57	317.72	314.15	317.72	310.57	
C15	Total Petroleum Hydrocarbons	μg/l	140	<50	<95	140	<50	
155	Total Dissolved Solids	mg/l	204	197	201	204	197	1000^{2}
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	1.69	5.02	3.36	5.02	1.69	10^{3}
205	Nitrite	mg-N/l	<0.02	< 0.02	<0.02	< 0.02	< 0.02	10^{3}
257	Sulfate	mg/l	21	19.5	20	21	19.5	500 ⁴
301	Chloride	mg/l	9.5	32.6	21.1	32.6	9.5	500 ⁴
	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	1410	730	1070	1410	730	
602	Chloroform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
608	Bromodichloromethane	μg/l	<0.5	< 0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	< 0.5	<0.5	<0.5	<0.5	
610	Bromoform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
723	Sodium	mg/l	12.5	13.7	13.1	13.7	12.5	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.24 2003 ANNUAL DATA MONITORING WELL, MW15

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	June	September	LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/1	<10	<11	
TEST	ANNUAL MRP (METALS)	UNIT	June	September	LIMIT
703	Calcium	mg/l	45.7	38.4	
704	Magnesium	mg/l	8.78	8.3	
705	Arsenic	mg/l	< 0.001		0.05
706	Barium	mg/l	0.057		1
707	Aluminum	mg/l			1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l			
712	Copper	mg/l	< 0.008		1
713	Iron	mg/l	< 0.05		0.3
714	Lead	mg/l	< 0.002		
716	Manganese	mg/l	< 0.005		0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/l	< 0.02		0.1
719	Potassium	mg/l	2.6	<10	
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.045		5
725	Antimony	mg/l	< 0.0005		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l			
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l			

TABLE 6.242003 ANNUAL DATAMONITORING WELL, MW15

TEST	ANNUAL MRP	UNIT	June	LIMIT
	(PESTICIDES & PCBs)			
	PP'-DDE	µg/l	< 0.01	
	PP'-DDD	μg/l	< 0.01	
	PP'-DDT	μg/l	< 0.01	
	Alpha-BHC	μg/l	< 0.01	
	Lindane (Gamma-BHC)	μg/l	<0.01	0.2
	Heptachlor Heptachlor Epoxide	μg/l	< 0.01	0.01
512	Aldrin	<u>μg/l</u>	<0.01	0.01
	Dieldrin	μg/l	<0.01	·····
513	Endrin	μg/l	<0.01	
	Toxaphene	μg/l μg/l	<0.01 <0.5	2
	Aroclor 1242	μ <u>g/1</u> μg/l	<0.3	
520	Aroclor 1254	$\mu g/l$	<0.05	
	Beta-BHC	μg/1 μg/1	<0.03	
	Delta-BHC	μg/1 μg/1	<0.01	
	Endosulfan I	μg/l	< 0.01	
	Endosulfan II	μg/l	< 0.01	
	Endosulfan Sulfate	$\mu g/l$	<0.1	
	Endrin Aldehyde	μg/l	< 0.01	
535	Aroclor 1016	μg/l	< 0.1	0.5
536	Aroclor 1221	µg/l	<0.1	0.5
537	Aroclor 1232	μg/l	<0.1	0.5
538	Aroclor 1248	µg/l	<0.1	0.5
539	Aroclor 1260	μg/l	<0.1	0.5
540	Technical Chlordane	μg/l	< 0.05	0.1
TEST	ANNUAL MRP	UNIT	June	LIMIT
601	(VOLATILE ORGANICS) Methylene Chloride	μg/l	<0.5	
603	1,1,1-Trichloroethane	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμ	<0.5	200
604	Carbon Tetrachloride	μg/l	<0.5	0.5
605	1,1-Dichloroethene	μg/l	<0.5	6
606	Trichloroethylene	μg/l	<0.5	5
607	Tetrachloroethylene	µg/l	<0.5	5
611	Chlorobenzene	µg/l	< 0.5	70
612	Vinyl Chloride	μg/l	<0.5	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l	<0.5	600
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	<0.5	
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	<0.5	5
616	1,1-Dichloroethane	μg/l	<0.5	5
618	1,1,2-Trichloroethane	µg/l	<0.5	5
	1,2-Dichloroethane	μg/l	<0.5	0.5
620	Benzene	μg/l	<0.5	
621	Toluene	µg/l	<0.5	150
624	Ethyl Benzene	µg/l	<0.5	700
645	Trans-1,2-Dichloroethylene	μg/l	<0.5	10
646	Bromomethane	μg/l	<0.5	
647	Chloroethane	μg/l	<0.5	
648	2-Chloroethylvinylether	μ <u>g</u> /l	<0.5	
	Chloromethane	<u>μg/l</u>	<0.5	<u>-</u>
	1,2-Dichloropropane	μg/l	<0.5	5
	Cis-1,3-Dichloropropene	μg/l	<0.5 <0.5	0.5
652	Trans-1,3-Dichloropropene	μg/l μg/l	<0.5	0.5
653	1,1,2,2-Tetrachloroethane	μg/I μg/l	<0.5	
654	Acrolein		<2	
<u>655</u> 662	Acrylonitrile Methyl Tertiary Butyl Ether	μg/l μg/l	<0.5	
002	Intenty Ternary Duty Euler	$\mu g/I$	<u>\U.3</u>	L

TABLE 6.24 2003 ANNUAL DATA MONITORING WELL, MW15

	ANNUAL MRP			
TEST	(BASE/NEUTRAL EXTRACTIBLES)	UNIT	June	
800	Acenaphthene	μg/l	<1	
801	Acenaphthylene	μg/l	<10	ļ
	Anthracene	μg/l	<10	
	Benzidine	μg/l	<5	
the second s	Benzo(a)anthracene	μg/l	<5	0.2
	Benzo(a)pyrene	<u>μg/l</u>	<10	0.2
	Benzo(b)fluoranthene	μg/l	<10	
	1,12-Benzoperylene	μ <u>g</u> /1	<5	
	Benzo(k)fluoranthene	<u>μg/l</u>	<5	
809	Bis(2-chloroethoxy)methane	μg/l μg/l	<1	
810	Bis(2-Chloroethyl)ether	μg/1 μg/l	<2	
811 812	Bis(2-diethylhexyl)phthalate	μg/1 μg/1	<5	4
812	4-Bromophenyl Phenyl Ether	$\mu g/l$	<5	
813	Butylbenzyl Phthalate	μg/l	<10	
815	2-Chloronaphthalene	$\mu g/l$	<10	
816	4-Chlorophenyl Phenyl Ether	μg/l	<5	
817	Chrysene	μg/l	<10	
818	1,2,5,6-Dibenzanthracene	μg/l	<10	
819	1,2-Dichlorobenzene	μg/!	<2	
	1,3-Dichlorobenzene	μg/l	<1	
820	1,4-Dichlorobenzene	μg/1	<1	
822	3,3'-Dichlorobenzidine	μg/l	<5	
823	Diethyl Phthalate	μg/l	<2	
824	Dimethyl Phthalate	μg/l	<2	
825	Di-n-Butyl Phthalate	μg/l	<10	
826	2,4-Dinitrotoluene	μg/l	<5	
827	2,6-Dinitrotoluene	μg/l	<5	
828	Di-n-Octyl Phthalate	μg/l	<10	
829	1,2-Diphenylhydrazine	μg/1	<1	
830	Fluoranthene	μg/l	<1	
831	Fluorene	μg/l	<10	
832	Hexachlorobenzene	μg/l	<1	1
833	Hexachlorobutadiene	μg/l	<1	
834	Hexachlorocyclopentadiene	_μg/l	<5	50
835	Hexachloroethane	μ <u>g/l</u>	<1	
836	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
837	Isophorone	μg/1	<1	
838	Naphthalene	μg/l	<u> </u>	
839	Nitrobenzene	$\mu g/l$	<5	
840	n-Nitrosodimethylamine	μ <u>g/l</u>	<5	
841	n-Nitrosodi-n-propylamine	μ <u>g/l</u> μ <u>g</u> /l	<5	
842	Phenanthrene	μg/1 μg/1	<10	
843	Pyrene	$\mu g/l$	<0.00022	0.0000
844		μ <u>g/1</u> μg/l	<5	70
846	1,2,4-Trichlorobenzene	$\mu g/1$	<1	
857	n-Nitrosodiphenylamine ANNUAL MRP			1
TEST		UNIT	June	LIMI
	(ACID EXTRACTIBLES)	_µg/l	<5	1
845	2-Chlorophenol 2,4-Dichlorophenol	μg/l	<5	1
847		μg/l	<2	1
<u>848</u> 849		μg/l	<5	1
849		μg/1	<5]
850	2-Methyl-4,8-Dintrophenor (p-emoro-m	μg/l	<10	1
852		μg/l	<10	
852		μg/1	<1]
853		μg/1	<5	
855		μg/l	<1	
855				
1 000	12, T, O ⁻ I Hemolophenol			

856 [2,4,6-Trichlorophenol EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.252003 SEMIANNUAL DATAMONITORING WELL, MW16

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	October	December	Mean	Max	Min	LIMIT
1 S 1	pH	0-14	7.36	7.69	8.07	7.71	8.07	7.36	
1S2	Temperature	°C	16.34	16.62	16.33	16.43	16.62	16.33	
	Dissolved Oxygen	mg/l	2.24	7.34	3.55	4.38	7.34	2.24	·····
1S4	Electrical Conductivity	µmhos/cm	213	315	201	243	315	201	1600 ¹
900	Depth to Groundwater	ft	305.43	309.39	309.9	308.2	309.9	305.43	
C15	Total Petroleum Hydrocarbons	μg/l	210	<50		<130	210	<50	
155	Total Dissolved Solids	mg/l	134	129		140	151	129	1000^{2}
201	Ammonia	mg-N/l	<0.1	< 0.01		<.06	<0.1	< 0.01	1000
203	Kjeldahl Nitrogen	mg-N/l	0.5	<0.1		<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	0.92	0.66		0.47	0.66	0.28	10 ³
205	Nitrite	mg-N/l	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	10^{3}
257	Sulfate	mg/l	16	15.1		16	17	15.1	500 4
301	Chloride	mg/l	4.9	4.3		3.8	4.3	3.3	500 ⁴
315	MBAS	mg/l	<0.1	< 0.1		<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/1	<500	530		<515	530	<500	
602	Chloroform	μg/1	<0.5	< 0.5		< 0.5	< 0.5	< 0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5		<0.5	< 0.5	< 0.5	
609	Dibromochloromethane	μg/l	<0.5	< 0.5		< 0.5	< 0.5	< 0.5	
	Bromoform	μg/l	<0.5	<0.5		< 0.5	< 0.5	< 0.5	
723	Sodium	mg/l	11	22.5		17	22.5	11	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.26 2003 ANNUAL DATA MONITORING WELL, MW16

TEST	ANNUAL MRP	UNIT	June	October		LIMIT
206	(MISCELLANEOUS)			·····	4	200
	Total Cyanides	μ <u>g/l</u>	<5	-11	4	200
312	Total Phenols	μg/l	<50	<11		
TEST	ANNUAL MRP (METALS)	UNIT	June	October	December	LIMIT
703	Calcium	mg/l	27.4	22.1		
704	Magnesium	mg/l	5.71	4.6		
705	Arsenic	mg/l	< 0.001			0.05
706	Barium	mg/l	0.037			1
707	Aluminum	mg/l			0.06	1
708	Cadmium	mg/l	< 0.0004			0.005
709	Total Chromium	mg/l	< 0.01			0.05
711	Cobalt	mg/l			< 0.01	
712	Copper	mg/l	<0.008			1
713	Iron	mg/l	0.133			0.3
714	Lead	mg/l	< 0.002			
716	Manganese	mg/l	< 0.005			0.05
717	Mercury	mg/l	< 0.00004			0.002
718	Nickel	mg/l	< 0.02			0.1
719	Potassium	mg/l	1.9	<10		
720	Selenium	mg/l	< 0.001			0.05
722	Silver	mg/l	< 0.025			0.1
724	Zinc	mg/l	0.03			5
725	Antimony	mg/l	0.0006			0.006
726	Beryllium	mg/l	< 0.0005			0.004
732	Molybdenum	mg/l			<0.04	
734	Thallium	mg/l	< 0.001			0.002
737	Vanadium	mg/l			< 0.02	

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

. .

TABLE 6.26 2003 ANNUAL DATA MONITORING WELL, MW16

	ANNUAL MRP		
TEST	1	UNIT	June
502	(PESTICIDES & PCBs) PP'-DDE	110/1	<0.01
	PP'-DDD	μg/l	<0.01
	PP'-DDT		<0.01
508	Alpha-BHC	μg/1 μg/1	<0.01
	Lindane (Gamma-BHC)		<0.01
510	Heptachlor	μg/l	<0.01
	Heptachlor Epoxide	μg/l	<0.01
<u>511</u> 512		<u>μg/l</u>	<0.01
	Aldrin	μg/l	<0.01
513	Dieldrin	μg/l	<0.01
514	Endrin	<u>μg/l</u>	<0.01
515	Toxaphene	μg/l	<0.1
519	Aroclor 1242	μg/l	<0.05
520	Aroclor 1254	μg/l	
523	Beta-BHC	<u>μg/l</u>	<0.01 <0.01
524	Delta-BHC	μg/l	<0.01
531	Endosulfan I	μ <u>g/l</u>	<0.01
532	Endosulfan II	μg/l	<0.01
533	Endosulfan Sulfate	μg/l	
534	Endrin Aldehyde	<u>μg/l</u>	<0.01
535	Aroclor 1016	<u>μg/l</u>	
536	Aroclor 1221	μg/l	<0.1
537	Aroclor 1232	μg/l	<0.1
538	Aroclor 1248	μg/l	<0.1
539	Aroclor 1260	μ <u>g/</u> }	<0.1
540	Technical Chlordane	μ <u>g</u> /l	<0.05
TEST	ANNUAL MRP	UNIT	June
1651	(VOLATILE ORGANICS)		
601	Methylene Chloride	μg/l	<0.5
603	1,1,1-Trichloroethane	µg/l	<0.5
604	Carbon Tetrachloride	μg/l	<0.5
605	1,1-Dichloroethene	μg/l	<0.5
606	Trichloroethylene	μg/l	<0.5
607	Tetrachloroethylene	μ <u>g</u> /l	<0.5
611	Chlorobenzene	μ <u>g</u> /l	<0.5
612	Vinyl Chloride	μg/l	<0.5
613	o-Dichlorobenzene (1,2-	μg/1	<0.5
614	m-Dichlorobenzene (1,3-	μg/l	< 0.5
615	p-Dichlorobenzene (1,4-	μg/l	<0.5
616	1,1-Dichloroethane	μg/l	<0.5
618	1,1,2-Trichloroethane	ug/l	<0.5
619		μg/l	<0.5
620	Benzene	μg/1	<0.5
621	Toluene	μg/1	<0.5
	Ethyl Benzene	μg/1	<0.5
645		μg/l	<0.5
646	Bromomethane	μg/1	<0.5
647	Chloroethane	$\mu g/l$	<0.5
648	2-Chloroethylvinylether	μg/1	<0.5
649	Chloromethane	μg/l	<0.5
650	1,2-Dichloropropane	μg/1	< 0.5
	Cis-1,3-Dichloropropene	μ <u>g</u> /1 μ <u>g</u> /1	<0.5
651	Trans-1,3-Dichloropropene	$\mu g/l$	<0.5
652		$\mu g/l$	<0.5
653	1,1,2,2-Tetrachloroethane	μg/1	<0.5
654			<2
655	Acrylonitrile	<u>μg/l</u>	<0.5
662	Methyl Tertiary Butyl Ether	μg/l	<u> </u>

TABLE 6.26 2003 ANNUAL DATA MONITORING WELL, MW16

.

	ANNUAL MRP		_		Т
TEST	(BASE/NEUTRAL	UNIT	June		LIMIT
800	Acenaphthene	µg/l	<1		
801	Acenaphthylene	μg/l	<10		
802	Anthracene	μ <u>g</u> /l	<10		
	Benzidine	μg/l	<5		
	Benzo(a)anthracene	μg/l	<5		
	Benzo(a)pyrene	μg/l	<10		0.2
806	Benzo(b)fluoranthene	μg/l	<10		
	1,12-Benzoperylene	μg/l	<5		
808	Benzo(k)fluoranthene	μg/l	<10		
809	Bis(2-chloroethoxy)methane	μg/l	<5		
810	Bis(2-Chloroethyl)ether	μg/l	<1		
811	Bis(2-chloroisopropyl)ether	μg/l	<2		
812	Bis(2-diethylhexyl)phthalate	μg/l	<5		4
813	4-Bromophenyl Phenyl Ether	μg/l	<5		
814	Butylbenzyl Phthalate	μg/l	<10		
815	2-Chloronaphthalene	μg/l	<10		
816	4-Chlorophenyl Phenyl Ether	μg/l	<5		
817	Chrysene	μg/l	<10		
818	1,2,5,6-Dibenzanthracene	μg/l	<10		
819	1,2-Dichlorobenzene	μ <u>g</u> /l	<2		
820	1,3-Dichlorobenzene	μg/l	<1		
821	1,4-Dichlorobenzene	μg/l	<1		
822	3,3'-Dichlorobenzidine	μg/l	<5		
823	Diethyl Phthalate	μg/1	<2		
824	Dimethyl Phthalate	μg/1	<2		
825	Di-n-Butyl Phthalate	μg/l	<10		
826	2,4-Dinitrotoluene	µg/l	<5		
827	2,6-Dinitrotoluene	μg/l	<5		
828	Di-n-Octyl Phthalate	μg/l	<10		
829	1,2-Diphenylhydrazine	μg/l	<1		
830	Fluoranthene	μg/l	<1		
831	Fluorene	μg/l	<10		
832	Hexachlorobenzene	μg/l	<1		1
833	Hexachlorobutadiene	μg/l	<1		
834	Hexachlorocyclopentadiene	μg/l	<5		50
835	Hexachloroethane	μg/l	<1		
836	Indeno(1,2,3-c,d)pyrene	μg/1	<10		
837	Isophorone	μg/l	<1		
	Naphthalene	μg/l	<1		
	Nitrobenzene	μg/l	<1		
840	n-Nitrosodimethylamine	μg/l	<5		
841	n-Nitrosodi-n-propylamine	μg/l	<5		
842	Phenanthrene	μg/l	<5		
	Pyrene	$\mu g/l$	<10	1	
844	2,3,7,8-TCDD	μg/l	< 0.0001		0.00003
846	1,2,4-Trichlorobenzene	μ <u>μ</u> μ <u>μ</u>	<5	1	70
857	n-Nitrosodiphenylamine	μ <u>g</u> /l	<1	1	
	ANNUAL MRP			1	I IN COM
TEST	(ACID EXTRACTIBLES)	UNIT	June		LIMIT
845	2-Chlorophenol	μg/l	<5	1	
847	2,4-Dichlorophenol	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμ	<5	1	
848	2.4-Dimethylphenol	$\mu g/l$	<2	1	
849	2,4-Dinitrophenol	μ <u>μ</u> μ <u>μ</u> μμ	<5	1	
850	2-Methyl-4,6-Dinitrophenol (p-	μ <u>μ</u> g/1 μg/1	<5	1	
851	2-Nitrophenol	$\mu g/l$	<10	1	
851	4-Nitrophenol	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμ	<10		
852	4-Chloro-3-Methylphenol (4,6-	μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u>	<1	1	
			<5	1	1
<u>854</u> 855	Pentachlorophenol Phenol	μ <u>g/l</u> μ <u>g/l</u>	<1	1	
855	2,4,6-Trichlorophenol	$\mu g/l$	<10	1	
0.0	12,7,0-11101010pilen01	<u>ιμε/ι</u>		L	

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

. ...

TABLE 6.27 2003 SEMIANNUAL DATA **MONITORING WELL, MW17**

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	LIMIT
1S1	рН	0-14	6.96	
1S2	Temperature	°C	16.9	
1S3	Dissolved Oxygen	mg/l	0.67	
1S4	Electrical Conductivity	µmhos/cm	475	1600 ¹
900	Depth to Groundwater	ft	279.83	
C15	Total Petroleum Hydrocarbons	μg/l	160	
155	Total Dissolved Solids	mg/l	300	1000 ²
201	Ammonia	mg-N/l	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	
204	Nitrate	mg-N/l	2.18	10 ³
205	Nitrite	mg-N/l	< 0.02	10 ³
257	Sulfate	mg/l	66	500 ⁴
301	Chloride	mg/l	36	500 ⁴
315	MBAS	mg/l	<0.1	0.50
405	Total Organic Carbon	μg/l	1290	
602	Chloroform	μg/l	<0.5	
608	Bromodichloromethane	μg/l	<0.5	
609	Dibromochloromethane	μg/l	<0.5	
610	Bromoform	μg/l	<0.5	
723	Sodium	mg/l	38.7	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.28 2003 ANNUAL DATA MONITORING WELL, MW17

TEST	ANNUAL MRP (MISCELLANEOUS)	UNIT	June	LIMIT
206	Total Cyanides	μg/l	<5	200
312	Total Phenols	μg/1	<11	
TEST	ANNUAL MRP (METALS)	UNIT	June	LIMIT
703	Calcium	mg/l	51	
704	Magnesium	mg/l	8.95	
705	Arsenic	mg/l	< 0.001	0.05
706	Barium	mg/l	0.079	1
707	Aluminum	mg/l		1
708	Cadmium	mg/l	< 0.0004	0.005
709	Total Chromium	mg/l	0.073	0.05
711	Cobalt	mg/l		
712	Copper	mg/l	<0.008	1
713	Iron	mg/l	0.436	0.3
714	Lead	mg/l	0.002	
716	Manganese	mg/l	< 0.005	0.05
717	Mercury	mg/l	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	0.1
719	Potassium	mg/l	2.7	
720	Selenium	mg/l	<0.001	0.05
722	Silver	mg/l	< 0.025	0.1
724	Zinc	mg/l	0.036	5
725	Antimony	mg/l	0.0009	0.006
726	Beryllium	mg/l	<0.0005	0.004
732	Molybdenum	mg/l		
734	Thallium	mg/l	< 0.001	0.002
737	Vanadium	mg/l		

....

TABLE 6.28 2003 ANNUAL DATA MONITORING WELL, MW17

TEST	ANNUAL MRP	UNIT	June	LIMIT
	(PESTICIDES & PCBs)		<0.01	
	PP'-DDD	μg/l μg/l	<0.01	
	PP'-DDT	μ <u>g</u> /l μg/l	<0.01	
508	Alpha-BHC	μ <u>μ</u> g/l	<0.01	
	Lindane (Gamma-BHC)	μg/1	< 0.01	0.2
	Heptachlor	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμμμμμ	< 0.01	0.01
511	Heptachlor Epoxide	μg/l	< 0.01	0.01
512	Aldrin	μg/l	< 0.01	
513	Dieldrin	μg/l	< 0.01	
514	Endrin	μg/l	< 0.01	2
515	Toxaphene	μg/l	< 0.5	3
519	Aroclor 1242	μg/l	<0.1	
520	Aroclor 1254	μg/l	< 0.05	
	Beta-BHC	μg/l	< 0.01	
	Delta-BHC	μg/l	< 0.01	
	Endosulfan I	μ <u>g</u> /l	< 0.01	
	Endosulfan II	μg/l	< 0.01	
	Endosulfan Sulfate	μg/l	<0.1	
	Endrin Aldehyde	μg/l	< 0.01	
	Aroclor 1016	<u>μg/l</u>	<0.1	0.5
	Aroclor 1221	μg/l	<0.1	0.5
	Aroclor 1232	μg/l	<0.1	0.5
538	Aroclor 1248	μg/l	<0.1	0.5
539	Aroclor 1260	μ <u>g/l</u> μg/l	<0.05	0.1
540	Technical Chlordane ANNUAL MRP	μg/1	~0.03	
TEST	(VOLATILE ORGANICS)	UNIT	June	LIMIT
601	Methylene Chloride	μg/l	<0.5	
603	1,1,1-Trichloroethane	μg/l	<0.5	200
604	Carbon Tetrachloride	μg/l	<0.5	0.5
	1,1-Dichloroethene	μg/l	<0.5	6
606	Trichloroethylene	μg/l	<0.5	5
607	Tetrachloroethylene	μg/l	<0.5	70
611	Chlorobenzene	μg/l	<0.5	0.5
612	Vinyl Chloride	<u>μg/l</u>	<u><0.5</u> <0.5	600
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	<u>μg/1</u>	<0.5	
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	<u>μg/l</u> μg/l	<0.5	5
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	<0.5	5
616	1,1-Dichloroethane	μ <u>g</u> /l	<0.5	5
618 619	1,1,2-Trichloroethane	μg/1	<0.5	0.5
619	Benzene	μg/1 μg/1	<0.5	1
620	Toluene	μg/1	<0.5	150
	Ethyl Benzene	μ <u>g</u> /l	<0.5	700
645	Trans-1,2-Dichloroethylene	μg/1	<0.5	10
646	Bromomethane	μg/l	<0.5	
647	Chloroethane	μg/l	<0.5	
648	2-Chloroethylvinylether	μg/1	<0.5	
	Chloromethane	μg/l	<0.5	
650	1,2-Dichloropropane	μg/l	<0.5	5
	Cis-1,3-Dichloropropene	μg/l	<0.5	0.5
651			<0.5	0.5
<u>651</u> 652		μg/l		
652	Trans-1,3-Dichloropropene	μg/l μg/l	<0.5	1
652 653	Trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane		<0.5 <2	
652	Trans-1,3-Dichloropropene	μg/l	<0.5	

TABLE 6.28 2003 ANNUAL DATA MONITORING WELL, MW17

TEST	ANNUAL MRP (BASE/NEUTRAL EXTRACTIBLES)	UNIT	June	LIMIT
800	Acenaphthene	μ <u>g</u> /l	<1	
	Acenaphthylene	μg/1	<10	
	Anthracene	μg/l	<10	
	Benzidine	μg/l	<5	
804	Benzo(a)anthracene	µg/l	<5	
805	Benzo(a)pyrene	μg/l	<10	0.2
	Benzo(b)fluoranthene	μg/l	<10	
	1,12-Benzoperylene	μg/l	<5	
808	Benzo(k)fluoranthene	μg/l	<10	
	Bis(2-chloroethoxy)methane	μg/l	<5	
	Bis(2-Chloroethyl)ether	<u>μg/l</u>	<1	
	Bis(2-chloroisopropyl)ether	μg/l	<2	
	Bis(2-diethylhexyl)phthalate	μg/l	<5	4
	4-Bromophenyl Phenyl Ether	μ <u>g/l</u>	<5	
	Butylbenzyl Phthalate	μg/l	<10	
	2-Chloronaphthalene	μg/l	<10	
	4-Chlorophenyl Phenyl Ether	μg/l μg/l	<10	
	Chrysene 1,2,5,6-Dibenzanthracene		<10	<u> </u>
	1,2,5,6-Dibenzantmacene	μg/l μg/l	<10	
	1,3-Dichlorobenzene	μ <u>g</u> /1 μg/l	<1	
	1,4-Dichlorobenzene	μg/l	<1	
	3.3'-Dichlorobenzidine	μg/l	<5	
	Diethyl Phthalate	μg/l	<2	
	Dimethyl Phthalate	μg/l	<2	-
	Di-n-Butyl Phthalate	μg/l	<10	
	2,4-Dinitrotoluene	μg/l	<5	
	2,6-Dinitrotoluene	μg/l	<5	
	Di-n-Octyl Phthalate	μg/l	<10	
829	1,2-Diphenylhydrazine	µg/l	<1	
830	Fluoranthene	µg/l	<1	
	Fluorene	μg/l	<10	
	Hexachlorobenzene	μg/l	<1	1
	Hexachlorobutadiene	μg/l	<1	
	Hexachlorocyclopentadiene	μg/l	<5	50
835	Hexachloroethane	μ <u>g/l</u>	<1	
836	Indeno(1,2,3-c,d)pyrene	<u>μg/l</u>	<10	
837	Isophorone	<u>μg/l</u>	<1	_
838	Naphthalene	μg/l	<1	_
	Nitrobenzene	μg/l	<5	_
840 841	n-Nitrosodimethylamine n-Nitrosodi-n-propylamine	<u>μg/l</u> μg/l	<5	
841	Phenanthrene	μg/l	<5	
	Pyrene	μg/1 μg/1	<10	
844	2,3,7,8-TCDD	μg/l	<0.000086	0.00003
846	1,2,4-Trichlorobenzene	μg/l	<5	70
857	n-Nitrosodiphenylamine	µg/l	<1	
	ANNUAL MRP		F	LIMIT
TEST	(ACID EXTRACTIBLES)	UNIT	June	
845	2-Chlorophenol	μ <u>g/l</u>	<5	
847	2,4-Dichlorophenol	<u>μg/l</u>	<5	
848	2,4-Dimethylphenol	μg/l	<2 <5	
849	2,4-Dinitrophenol	μg/l	<5	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l	<10	
851	2-Nitrophenol	<u>μg/l</u>	<10	_
852	4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μ <u>g/l</u> μg/l	<1	
853	Pentachlorophenol	μ <u>g/1</u> μg/1	<5	
<u>854</u> 855	Phenol	$\mu g/l$	<1	<u> </u>
855	2,4,6-Trichlorophenol	μg/l	<10	
020	[2,+,0-1 Hemotophenol	<u>µ£/1</u>	1	

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

...

TABLE 6.29 2003 SEMIANNUAL DATA MONITORING WELL, MW18

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	March	May	September	October	December	Mean	Max	Min	LIMIT
1S1	pH	0-14	5.68	6.82	6.87	7.56	7.26	6.84	7.56	5.68	
1S2	Temperature	°C	8.27	18.55	19.07	18.21	17.31	16.28	19.07	8.27	
1S3	Dissolved Oxygen	mg/l	10.08	1	6.6	6.5	0.62	5	10.08	0.62	
1S4	Electrical Conductivity	µmhos/cm	944	936	774	742	746	828	944	742	1600 ⁻¹
900	Depth to Groundwater	ft	312.8	317.96	319.4	319.98	319.5	317.9	319.98	312.8	
C15	Total Petroleum Hydrocarbons	μg/1		540	70			305	540	70	
155	Total Dissolved Solids	mg/l	645	626	442	429		536	645	429	1000^{2}
201	Ammonia	mg-N/l		<0.1	<0.1			<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l		0.6	<0.1			<0.4	0.6	<0.1	
204	Nitrate	mg-N/l	15.8	14.6	10.7	9.80		12.7	15.8	9.80	10^{3}
205	Nitrite	mg-N/l	<0.02	< 0.02	<0.02	<0.02		< 0.02	<0.02	<0.02	10^{3}
257	Sulfate	mg/l		95	74.8			85	95	74.8	500 ⁴
301	Chloride	mg/l		92	60.8			76	92	60.8	500 ⁴
315	MBAS	mg/l		<0.1	<0.1			<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l		2540	740			1640	2540	740	
602	Chloroform	μg/l		<0.5	<0.5			<0.5	<0.5	< 0.5	
608	Bromodichloromethane	μg/1		<0.5	<0.5			<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l		<0.5	<0.5			<0.5	<0.5	< 0.5	
610	Bromoform	μg/l		<0.5	<0.5			<0.5	<0.5	< 0.5	
723	Sodium	mg/l		38	27.1			33	38	27.1	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.30 2003 ANNUAL DATA MONITORING WELL, MW18

TEST	MISCELLANEOUS PARAMETERS	UNIT	May	September		LIMIT
206	Total Cyanides	μg/l	<5			200
312	Total Phenols	μg/l	<12	<11		
TEST	METALS	UNIT	May	September	December	LIMIT
703	Calcium	mg/l	140	85.8		
704	Magnesium	mg/l	26.3	19.1		
705	Arsenic	mg/l	< 0.001	< 0.001		0.05
706	Barium	mg/l	0.198	0.134		1
707	Aluminum	mg/l			< 0.05	1
708	Cadmium	mg/l	< 0.0004		< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	< 0.01		0.05
711	Cobalt	mg/l			< 0.01	
712	Copper	mg/l	< 0.008	< 0.008		1
713	Iron	mg/l	< 0.05		< 0.05	0.3
714	Lead	mg/l	< 0.002	< 0.002		
716	Manganese	mg/l	< 0.005		< 0.005	0.05
717	Mercury	mg/l	< 0.00004	< 0.00004		0.002
718	Nickel	mg/l	< 0.02	< 0.02		0.1
719	Potassium	mg/l	3.5	<10		
720	Selenium	mg/l	< 0.001	< 0.001		0.05
722	Silver	mg/l	< 0.025	< 0.025		0.1
724	Zinc	mg/l	0.046	0.045		5
725	Antimony	mg/l	<0.0005	<0.0005		0.006
726	Beryllium	mg/l	<0.0005			0.004
732	Molybdenum	mg/l			< 0.04	
734	Thallium	mg/l	< 0.001	<0.001		0.002
737	Vanadium	mg/l	l		< 0.02	

....

TABLE 6.30 2003 ANNUAL DATA MONITORING WELL, MW18

TEST	PESTICIDES & PCBs	UNIT	May	LIMI	r
502	PP'-DDE	μg/l	< 0.01		
	PP'-DDD	μg/l	< 0.01		
	PP'-DDT	μg/l	< 0.01		
508	Alpha-BHC	μg/l	< 0.01		
	Lindane (Gamma-BHC)	μg/1	< 0.01	0.2	
	Heptachlor	μg/l	< 0.01	0.01	
	Heptachlor Epoxide	μg/l	< 0.01	0.01	
	Aldrin	μg/l	< 0.01		
	Dieldrin	μg/l	< 0.01		
	Endrin	μg/l	< 0.01	2	
515	Toxaphene	μg/l	< 0.5		
519	Aroclor 1242	μg/l	< 0.1		
	Aroclor 1254	μg/l	< 0.05		
523	Beta-BHC	μg/l	< 0.01		
524	Delta-BHC	μg/l	< 0.01		
	Endosulfan I	μg/l	< 0.01		
532	Endosulfan II	μg/l	< 0.01		
533	Endosulfan Sulfate	μg/l	< 0.1		
534	Endrin Aldehyde	μg/l	< 0.01		
535	Aroclor 1016	μg/l	< 0.1	0.5	
536	Aroclor 1221	μg/1	<0.1	0.5	
	Aroclor 1232	μg/l	< 0.1	0.5	
	Aroclor 1248	μg/l	<0.1	0.5	
539	Aroclor 1260	μg/l	<0.1	0.5	
540	Technical Chlordane	μg/l	< 0.05	0.1	
TEST	VOLATILE ORGANICS	UNIT	May	LIMI	r
601	Methylene Chloride	μg/l	< 0.5		
603	1,1,1-Trichloroethane	μg/l	< 0.5	200	
604	Carbon Tetrachloride	μg/l	< 0.5	0.5	
605	1,1-Dichloroethene	μg/l	<0.5	6	
606	Trichloroethylene	μg/l	< 0.5	5	
607	Tetrachloroethylene	μg/l	< 0.5	5	
611	Chlorobenzene	μg/l	< 0.5	70	
	Vinyl Chloride	μg/l	< 0.5	0.5	
613	o-Dichlorobenzene (1,2-	μg/l	< 0.5	600	
614	m-Dichlorobenzene (1,3-	μg/l	< 0.5		
615	p-Dichlorobenzene (1,4-	μg/l	<0.5	5	
	1,1-Dichloroethane	μg/l	< 0.5	5	
	1,1,2-Trichloroethane	μg/1	<0.5	5	
619	1,2-Dichloroethane	μg/l	<0.5	0.5	
620	Benzene	<u>μg/l</u>	<0.5	1	\neg
621	Toluene	$\mu g/l$	<0.5	150	
624	Ethyl Benzene	μ <u>g/l</u>	<0.5	700	
645	Trans-1,2-Dichloroethylene	μ <u>ε/l</u>	<0.5	10	\neg
646	Bromomethane	μg/l	<0.5	·	
647	Chloroethane	μg/1	<0.5		_
648	2-Chloroethylvinylether	μg/l	<0.5	┥ ┝───	
649	Chloromethane	μg/l	<0.5	۰ ا ب ب	\neg
650	1,2-Dichloropropane	μg/l	<0.5	5	\dashv
651	Cis-1,3-Dichloropropene	μ <u>g/l</u>	<0.5	0.5	\dashv
652	Trans-1,3-Dichloropropene	μg/l	<0.5	0.5	
653	1,1,2,2-Tetrachloroethane	μg/l	<0.5		\neg
654	Acrolein	<u>μg/l</u>	<2	┥ ┡───	_
<u>655</u> 662	Acrylonitrile	μ <u>g/l</u>	<2	┨ ┣	—
	Methyl Tertiary Butyl Ether	μg/l	< 0.5		

TABLE 6.30 2003 ANNUAL DATA MONITORING WELL, MW18

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	May
800	Acenaphthene	μg/l	<1
	Acenaphthylene	µg/l	<10
	Anthracene	µg/l	<10
	Benzidine	μg/l	<5
804	Benzo(a)anthracene	μg/l	<5
805	Benzo(a)pyrene	µg/l	<10
806	Benzo(b)fluoranthene	µg/l	<10
807	1,12-Benzoperylene	μg/l	<5
	Benzo(k)fluoranthene	μg/l	<10
809	Bis(2-chloroethoxy)methane	μg/l	<5
	Bis(2-Chloroethyl)ether	μg/l	<1
811	Bis(2-chloroisopropyl)ether	μg/l	<2
812	Bis(2-diethylhexyl)phthalate	μg/l	<5
	4-Bromophenyl Phenyl Ether	µg/l	<5
	Butylbenzyl Phthalate	μg/l	<10
815	2-Chloronaphthalene	μg/l	<10
816	4-Chlorophenyl Phenyl Ether	μg/l	<5
817	Chrysene	μg/l	<10
818	1,2,5,6-Dibenzanthracene	µg/l	<10
819	1,2-Dichlorobenzene	µg/l	<2
	1,3-Dichlorobenzene	μg/l	<1
821	1,4-Dichlorobenzene	μg/l	<1
822	3,3'-Dichlorobenzidine	µg/l	<5
823	Diethyl Phthalate	μg/l	<2
824	Dimethyl Phthalate	μg/l	<2
	Di-n-Butyl Phthalate	µg/l	<10
	2,4-Dinitrotoluene	μg/l	<5
827	2,6-Dinitrotoluene	μg/l	<5
	Di-n-Octyl Phthalate	µg/l	<10
	1,2-Diphenylhydrazine	µg/l	<1
	Fluoranthene	μg/l	<1
831	Fluorene	µg/l	<10
832	Hexachlorobenzene	μg/l	<1
833	Hexachlorobutadiene	μg/l	<1
834	Hexachlorocyclopentadiene	μg/l	<5
835	Hexachloroethane	μg/l	<1
836	Indeno(1,2,3-c,d)pyrene	μg/l	<10
837	Isophorone	µg/l	<1
838	Naphthalene	μg/l	<1
839	Nitrobenzene	μg/1	<1
840	n-Nitrosodimethylamine	μg/l	<5
841	n-Nitrosodi-n-propylamine	μg/l	<5
842	Phenanthrene	μg/l	<5
	Pyrene	μg/l	<10
843			
<u>843</u> 844	2,3,7,8-TCDD	μg/l	< 0.000083
844	2,3,7,8-TCDD	μg/l	
	2,3,7,8-TCDD 1,2,4-Trichlorobenzene		< 0.000083
844 846	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine	μg/l μg/l	<0.000083 <5 <1 May
844 846 857	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine	μg/l μg/l μg/l	<0.000083 <5 <1
844 846 857 TEST	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol	μg/l μg/l μg/l UNIT	<0.000083 <5 <1 May
844 846 857 TEST 845	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol	μg/l μg/l μg/l UNIT μg/l	<0.000083 <5 <1 May <5
844 846 857 TEST 845 847 848	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u>	<0.000083 <5 <1 May <5 <5
844 846 857 TEST 845 847 848 849	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμμ	<0.000083 <5 <1 May <5 <5 <5 <2
844 846 857 TEST 845 847 848 849 850	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2-Methyl-4,6-Dinitrophenol (p-Chloro-	μ <u>g</u> /l μ <u>g</u> /l UNIT μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l	<0.000083
844 846 857 TEST 845 847 848 849 850 851	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-Dinitrophenol (p-Chloro- 2-Nitrophenol	μ <u>g</u> /l μ <u>g</u> /l UNIT μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l	<0.000083
844 846 857 TEST 845 847 848 849 850 851 852	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-Dinitrophenol (p-Chloro- 2-Nitrophenol 4-Nitrophenol	μ <u>g</u> /l μ <u>g</u> /l UNIT μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l μ <u>g</u> /l	<0.000083
844 846 857 TEST 845 847 848 849 850 851 852 853	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-Dinitrophenol (p-Chloro- 2-Nitrophenol 4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro-	μ <u>g</u> /l μ <u>g</u> /l UNIT μ <u>g</u> /l μ <u>g</u> /l	<0.000083
844 846 857 TEST 845 847 848 849 850 851 852 853 854	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-Dinitrophenol (p-Chloro- 2-Nitrophenol 4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro- Pentachlorophenol	μ <u>g</u> /l μ <u>g</u> /l UNIT μ <u>g</u> /l μ <u>g</u> /l	<0.000083
844 846 857 TEST 845 847 848 849 850 851 852 853	2,3,7,8-TCDD 1,2,4-Trichlorobenzene n-Nitrosodiphenylamine ACID EXTRACTIBLES 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-Dinitrophenol (p-Chloro- 2-Nitrophenol 4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro- Pentachlorophenol Phenol	μ <u>g</u> /l μ <u>g</u> /l UNIT μ <u>g</u> /l μ <u>g</u> /l	<0.000083

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

•••

TABLE 6.31 2003 SEMIANNUAL DATA MONITORING WELL, MW20

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	January	Dece	mber	Mean	Max	Min	LIMIT
1S1	pH	0-14		7.31	7.06	7.19	7.31	7.06	
1S2	Temperature	°C		19.19	17.36	18.28	19.19	17.36	
1S3	Dissolved Oxygen	mg/l		4.82	1.70	3.26	4.82	1.70	
1S4	Electrical Conductivity	µmhos/cm		1085	1032	1059	1085	1032	1600 ⁺
900	Depth to Groundwater	ft	266.84	265.90	266.00	266.40	266.84	265.90	
C15	Total Petroleum Hydrocarbons	μg/l	<50	<50		<50	<50	<50	
155	Total Dissolved Solids	mg/l	649	665	653	654	665	649	1000^{2}
201	Ammonia	mg-N/l	<0.1	<0.1		<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1		<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	10.00	13.14	13.60	11.69	13.60	10.00	10^{3}
205	Nitrite	mg-N/l	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	10^{3}
257	Sulfate	mg/l	77.0	76.2		76.6	77.0	76.2	500 ⁴
301	Chloride	mg/l	121	114		118	121	114	500 ⁴
315	MBAS	mg/l	<0.1	<0.1		<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	960	910		935	960	910	
602	Chloroform	μg/l	<0.5	<0.5		< 0.5	<0.5	<0.5	
608	Bromodichloromethane	μg/l	<0.5	<0.5		<0.5	<0.5	< 0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5		<0.5	< 0.5	<0.5	
610	Bromoform	μg/l	<0.5	<0.5		< 0.5	<0.5	< 0.5	
723	Sodium	mg/l	36.8	38.4		37.6	38.4	36.8	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

.

TABLE 6.32 2003 ANNUAL DATA MONITORING WELL, MW20

TEST	MISCELLANEOUS PARAMETERS	UNIT	January	December	LIMIT
206	Total Cyanides	μg/l	<5	<5	200
312	Total Phenols	μg/l	<6	<50	
TEST	METALS	UNIT	January	December	LIMIT
703	Calcium	mg/l	125	128	
704	Magnesium	mg/l	26.9	27.3	
705	Arsenic	mg/l	< 0.001	< 0.001	0.05
706	Barium	mg/l	0.18	0.164	1
707	Aluminum	mg/l	< 0.05		1
708	Cadmium	mg/l	< 0.0004	< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	< 0.01	0.05
711	Cobalt	mg/l	< 0.01		
712	Copper	mg/l	<0.008	< 0.008	1
713	Iron	mg/l	0.06	< 0.05	0.3
714	Lead	mg/l	< 0.002	< 0.002	
716	Manganese	mg/l	0.01	< 0.005	0.05
717	Mercury	mg/l	< 0.00004	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	< 0.02	0.1
719	Potassium	mg/l	3.7	<10	
720	Selenium	mg/l	< 0.001	< 0.001	0.05
722	Silver	mg/l	< 0.025	< 0.025	0.1
724	Zinc	mg/l	0.05	0.018	5
725	Antimony	mg/l	< 0.0005	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	< 0.0005	0.004
732	Molybdenum	mg/l		< 0.04	
734	Thallium	mg/l	< 0.001	< 0.001	0.002
737	Vanadium	mg/l	< 0.02		

TABLE 6.32 2003 ANNUAL DATA MONITORING WELL, MW20

TEST		UNIT	January	December	LIMIT
	PP'-DDE	μg/l	< 0.01	<0.01	
	PP'-DDD	μg/l	<0.01	< 0.01	
	PP'-DDT	μg/l	< 0.01	< 0.01	
	Alpha-BHC	μg/l	< 0.01	< 0.01	
	Lindane (Gamma-BHC)	μg/1	< 0.01	< 0.01	0.2
	Heptachlor	μg/l	< 0.01	< 0.01	0.01
511	Heptachlor Epoxide	μg/l	< 0.01	< 0.01	0.01
	Aldrin	μg/l	< 0.01	< 0.01	
	Dieldrin	μg/l	<0.01	< 0.01	
	Endrin	μg/l	< 0.01	< 0.01	2
	Toxaphene	μg/l	< 0.5	< 0.5	3
519	Aroclor 1242	μg/1	<0.1	<0.1	
520	Aroclor 1254	μg/1	< 0.05	< 0.05	
523	Beta-BHC	μg/1	< 0.01	< 0.01	
	Delta-BHC	μg/l	<0.01	<0.01	-+
	Endosulfan I	$\mu g/l$	<0.01	<0.01	╺-╉─────┤
	Endosulfan II	μg/1	< 0.01	<0.01	-+
	Endosulfan Sulfate	μ <u>g</u> /l	<0.1	<0.1	
	Endrin Aldehyde	$\mu g/l$	<0.01	<0.01	-+
	Aroclor 1016	$\mu g/l$	<0.1	<0.1	0.5
	Aroclor 1221	$\mu g/l$	<0.1	<0.1	0.5
537	Aroclor 1232	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμ	<0.1		
	Aroclor 1252		<0.1	<u> </u>	0.5
	Aroclor 1248	μg/l	<0.1		
		μg/l		<0.1	0.5
	Technical Chlordane	μg/l	<0.05	< 0.05	0.1
TEST	VOLATILE ORGANICS	UNIT	January	December	LIMIT
	Methylene Chloride	μg/l	<0.5	< 0.5	_
	1,1,1-Trichloroethane	μg/1	<0.5	< 0.5	200
	Carbon Tetrachloride	μ <u>g</u> /l	<0.5	<0.5	0.5
	1,1-Dichloroethene	μ <u>g</u> /l	< 0.5	< 0.5	6
	Trichloroethylene	μ <u>g</u> /l	<0.5	< 0.5	5
	Tetrachloroethylene	μg/l	<0.5	<0.5	5
611	Chlorobenzene	µg/l	< 0.5	< 0.5	70
	Vinyl Chloride	μg/l	<0.5	< 0.5	0.5
	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l	<0 <u>.5</u>	< 0.5	600
	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	<0 <u>.5</u>	< 0.5	
	p-Dichlorobenzene (1,4-Dichlorobenzene)	μ <u>g</u> /l	< 0.5	< 0.5	5
	1,1-Dichloroethane	μg/l	< 0.5	< 0.5	5
	1,1,2-Trichloroethane	µg/l	<0 <u>.5</u>	<0.5	5
619	1,2-Dichloroethane	μg/l	<0.5	< 0.5	0.5
	Benzene	μg/1	<0.5	<0.5	1
	Toluene	μg/l	<0.5	< 0.5	150
624	Ethyl Benzene	μg/l	< 0.5	< 0.5	700
645	Trans-1,2-Dichloroethylene	μg/l	<0.5	< 0.5	10
646	Bromomethane	μg/l	<0.5	< 0.5	
	Chloroethane	μg/l	< 0.5	< 0.5	
	2-Chloroethylvinylether	μg/l	<0.5	<0.5	
	Chloromethane	μg/1	<0.5	<0.5	
	1,2-Dichloropropane	μg/1	<0.5	<0.5	5
	Cis-1,3-Dichloropropene	μg/1	<0.5	< 0.5	0.5
	Trans-1,3-Dichloropropene	μg/l	<0.5	<0.5	0.5
	1,1,2,2-Tetrachloroethane	μ <u>ε/</u> ι	< 0.5	< 0.5	-
	Acrolein	$\mu g/l$	<10	<10	
	Acrylonitrile	μg/l	<5	<5	-+
662	Methyl Tertiary Butyl Ether	μg/l	<0.5	<0.5	
	Intention a citizary Dutyr Duter	μ <u>κ/ι</u>	~0.0		استرجعت المحالي

.

TABLE 6.32 2003 ANNUAL DATA MONITORING WELL, MW20

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	January	December	LIMIT
800	Acenaphthene	μg/l	<1	<1	
	Acenaphthylene	μg/l	<10	<10	
	Anthracene	µg/l	<10	<10	
	Benzidine	µg/l	<5	<5	
	Benzo(a)anthracene	μg/l	<5	<5	
	Benzo(a)pyrene	μg/]	<10	<10	0.2
	Benzo(b)fluoranthene	μg/l	<10	< 0.02	
	1,12-Benzoperylene	μg/l	<5	<5	
	Benzo(k)fluoranthene	μg/l	<10	< 0.02	
	Bis(2-chloroethoxy)methane	μg/l	<5	<5	
	Bis(2-Chloroethyl)ether	μg/l	<1	<]	
811	Bis(2-chloroisopropyl)ether	μg/l	<2	<2	
	Bis(2-diethylhexyl)phthalate	μg/l	<5	<2	4
	4-Bromophenyl Phenyl Ether	μg/l	<5	<5	
814	Butylbenzyl Phthalate	μg/l	<10	<10	
815	2-Chloronaphthalene	μg/l	<10	<10	
816	4-Chlorophenyl Phenyl Ether	μg/l	<5	<5	
	Chrysene	μg/l	<10	< 0.02	
	1,2,5,6-Dibenzanthracene	μ <u>g/l</u>	<10	< 0.02	
	1,2-Dichlorobenzene	$\mu g/l$	<2	<2	
	1,3-Dichlorobenzene	μg/l	<1	<1	
	1,4-Dichlorobenzene	$\mu g/l$	<1	<1	-
	3,3'-Dichlorobenzidine	$\mu g/l$	<5	<5	
	Diethyl Phthalate	μ <u>g/1</u>	<2	<2	-
	Dimethyl Phthalate	μ <u>g/1</u> μg/l	<2	<2	
	Di-n-Butyl Phthalate		<10	<10	
	2.4-Dinitrotoluene	<u>μg/l</u>			
	2,6-Dinitrotoluene	<u>μg/l</u>	<5 <5	<u><5</u> <5	
		μg/l		<10	
828	Di-n-Octyl Phthalate	μg/l	<10		
	1,2-Diphenylhydrazine	<u>μg/l</u>	<1	<1	
	Fluoranthene	<u>μg/l</u>	<1	<1	
	Fluorene	μ <u>g/l</u>	<10	<10	+
	Hexachlorobenzene	μg/l	<1	<1	
	Hexachlorobutadiene	µg/l	<1	<1	
834	Hexachlorocyclopentadiene	μg/l	<5	<5	50
	Hexachloroethane	μg/l	<1	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	< 0.02	
	Isophorone	μg/l	<1	<1	
	Naphthalene	µg/l	<1	<1	
	Nitrobenzene	μg/l	<1	<1	
	n-Nitrosodimethylamine	μg/l	<5	<5	·
	n-Nitrosodi-n-propylamine	μg/l	<5	<5	
842	Phenanthrene	μg/l	<5	<5	
843	Pyrene	μg/l	<10	<10	
844	2,3,7,8-TCDD	µg/l	< 0.00066	< 0.0041	0.00003
846	1,2,4-Trichlorobenzene	μg/l	<5	<5	70
857	n-Nitrosodiphenylamine	μg/l	<1	<1	
TEST		UNIT	January	December	LIMIT
845	2-Chlorophenol	μg/l	<5	<5	
847	2,4-Dichlorophenol	μg/l	<5	<5	
848	2,4-Dimethylphenol	μg/l	<2	<2	
	2,4-Dinitrophenol	μg/l	<5	<5	
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	$\mu g/l$	<5	<5	
	2-Nitrophenol	$\mu g/l$	<10	<10	
	4-Nitrophenol	μg/l	<10	<10	
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/l	<1	<1	
853	Pentachlorophenol	μ <u>g/1</u>	<5	<5	1
	Phenol	$\frac{\mu g/l}{\mu g/l}$	<1	<1	
033			<10	<10	
856	2,4,6-Trichlorophenol	μg/l		1 10	

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

"

TABLE 6.33 2003 SEMIANNUAL DATA MONITORING WELL, MW21

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	January	LIMIT
151	pH	0-14		
1S2	Temperature	°C		
1S3	Dissolved Oxygen	mg/l		
1S4	Electrical Conductivity	µmhos/cm		1600
900	Depth to Groundwater	ft	310.88	
C15	Total Petroleum Hydrocarbons	μg/l	<50	
155	Total Dissolved Solids	mg/l	325	1000^{2}
201	Ammonia	mg-N/l	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	
204	Nitrate	mg-N/l	6.32	10^{3}
205	Nitrite	mg-N/l	< 0.02	10^{3}
257	Sulfate	mg/l	51	500 ⁴
301	Chloride	mg/l	47	500 ⁴
315	MBAS	mg/l	<0.1	0.50
405	Total Organic Carbon	μg/l	650	
602	Chloroform	μg/l	<0.5	
608	Bromodichloromethane	μg/l	< 0.5	
609	Dibromochloromethane	μg/l	<0.5	
610	Bromoform	μg/l	<0.5	
723	Sodium	mg/l	18.1	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.34 2003 ANNUAL DATA MONITORING WELL, MW21

TEST	MISCELLANEOUS PARAMETERS	UNIT	January	LIMIT
206	Total Cyanides	μg/l	<5	200
312	Total Phenols	μg/l	<5	
TEST	METALS	UNIT	January	LIMIT
703	Calcium	mg/l	71.6	
704	Magnesium	mg/l	13.8	
705	Arsenic	mg/l	< 0.001	0.05
706	Barium	mg/l	0.089	1
707	Aluminum	mg/l	< 0.05	1
708	Cadmium	mg/l	< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	0.05
711	Cobalt	mg/l	< 0.01	
712	Copper	mg/l	<0.008	1
713	Iron	mg/l	< 0.05	0.3
714	Lead	mg/l	< 0.002	
716	Manganese	mg/l	0.008	0.05
717	Mercury	mg/l	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	0.1
719	Potassium	mg/l	3	
720	Selenium	mg/l	0.0011	0.05
722	Silver	mg/l	< 0.025	0.1
724	Zinc	mg/l	0.04	5
725	Antimony	mg/l	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	0.004
732	Molybdenum	mg/l		
734	Thallium	mg/l	< 0.001	0.002
737	Vanadium	mg/l	< 0.02	

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.34 2003 ANNUAL DATA MONITORING WELL, MW21

TEST	PESTICIDES & PCBs	UNIT	January	LIMIT
502	PP'-DDE	μg/l	< 0.01	
	PP'-DDD	μg/l	< 0.01	
	PP'-DDT	μg/l	< 0.01	
	Alpha-BHC	μg/l	< 0.01	
	Lindane (Gamma-BHC)	μg/l	< 0.01	0.2
	Heptachlor	μg/l	< 0.01	0.01
	Heptachlor Epoxide	µg/l	< 0.01	0.01
	Aldrin	μ <u>g/l</u>	<0.01	
	Dieldrin	µg/l	< 0.01	
	Endrin Toxaphene	μ <u>g/l</u>	<0.01	2
	Aroclor 1242	μg/1	<0.5	3
	Aroclor 1254	μg/1	<0.1 <0.05	
	Beta-BHC	μg/i		
	Delta-BHC	μg/l	<0.01	
	Endosulfan I	μg/l	<0.01	
	Endosulfan II	μg/l	<0.01 <0.01	
	Endosulfan Sulfate	μg/1	<0.1	
	Endrin Aldehyde	$\mu g/l$	<0.01	
	Aroclor 1016	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμ	<0.01	0.5
	Aroclor 1221	$\mu g/l$	<0.1	0.5
	Aroclor 1222	μg/1	<0.1	0.5
	Aroclor 1232	μg/1	<0.1	0.5
	Aroclor 1260	μg/l	<0.1	0.5
540	Technical Chlordane	μg/1	<0.05	0.1
TEST	VOLATILE ORGANICS		January	LIMIT
601	Methylene Chloride	μg/l	<0.5	
603	1,1,1-Trichloroethane	µg/l	<0.5	200
604	Carbon Tetrachloride	µg/l	<0.5	0.5
605	1,1-Dichloroethene	μg/l	< 0.5	6
606	Trichloroethylene	μg/l	< 0.5	5
	Tetrachloroethylene	μg/1	<0.5	5
	Chlorobenzene	μg/1	< 0.5	70
	Vinyl Chloride	μg/l	< 0.5	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l	< 0.5	600
	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	< 0.5	
	p-Dichlorobenzene (1,4-Dichlorobenzene)	µg/l	< 0.5	5
	1,1-Dichloroethane	μg/l	<0.5	5
	1,1,2-Trichloroethane	μg/l	<0.5	5
	1,2-Dichloroethane	µg/1	< 0.5	0.5
620	Benzene	<u>μg/l</u>	<0.5	1
621	Toluene	μg/l	<0.5	150
	Ethyl Benzene	μg/l	<0.5	700
	Trans-1,2-Dichloroethylene	μg/l	<0.5	10
	Bromomethane	μg/l	<1	
	Chloroethane	μg/1	<0.5	
648	2-Chloroethylvinylether	μ <u>g/l</u>	<0.5	
	Chloromethane	μg/l	<0.5	
	1,2-Dichloropropane	μg/l	<0.5	5
	Cis-1,3-Dichloropropene	μg/l	<0.5	0.5
	Trans-1,3-Dichloropropene	<u>μg/l</u>	<0.5	0.5
	1,1,2,2-Tetrachloroethane	<u>μg/l</u>	<0.5	1
	Acrolein	μg/1	<5	······
	Acrylonitrile Methyl Tertiary Butyl Ether	μg/l μg/l	<5 <0.5	

•

TABLE 6.34 2003 ANNUAL DATA MONITORING WELL, MW21

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	January	LIMIT
	Acenaphthene	μg/l	<1	
801	Acenaphthylene	μg/l	<10	
	Anthracene	μg/l	<10	
	Benzidine	μg/l	<5	
	Benzo(a)anthracene	μg/l	<5	
	Benzo(a)pyrene	μg/l	<10	0.2
	Benzo(b)fluoranthene	μg/l	<10	
	1,12-Benzoperylene	µg/l	<5	
	Benzo(k)fluoranthene	μg/l	<10	
	Bis(2-chloroethoxy)methane	μg/l	<5	
	Bis(2-Chloroethyl)ether	μg/l	<1	
	Bis(2-chloroisopropyl)ether	μg/l	<2	
	Bis(2-diethylhexyl)phthalate	μg/l	<5	4
	4-Bromophenyl Phenyl Ether	μg/l	<5	
814	Butylbenzyl Phthalate	μg/l	<10	
	2-Chloronaphthalene	μg/l	<10	
	4-Chlorophenyl Phenyl Ether	μg/l	<5	
	Chrysene	μg/l	<10	
	1,2,5,6-Dibenzanthracene	μg/l	<10	
	1,2-Dichlorobenzene	$\mu g/l$	<2	
	1,3-Dichlorobenzene	$\mu g/l$	<1	
	1,4-Dichlorobenzene	μg/I μg/I	<1	
	3,3'-Dichlorobenzidine	μg/1 μg/l	<5	
	Diethyl Phthalate		<2	
	Dimethyl Phthalate	μg/l	<2	
	Dinnentyl Phthalate	μg/l		
825	2,4-Dinitrotoluene	μg/l	<10	
		μg/l	<5	
	2,6-Dinitrotoluene	μg/l	<5	
	Di-n-Octyl Phthalate	μg/l	<10	
	1,2-Diphenylhydrazine	μ <u>g/l</u>	<1	
	Fluoranthene	μg/l	<1	
	Fluorene	μ <u>g/l</u>	<10	
	Hexachlorobenzene	µg/l	<1	1
	Hexachlorobutadiene	μg/l	<1	
	Hexachlorocyclopentadiene	μg/l	<5	50
	Hexachloroethane	μg/l	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	
	Isophorone	μg/l	<]	
	Naphthalene	μg/l	<1	
839	Nitrobenzene	μg/l	<1	
840	n-Nitrosodimethylamine	μg/l	<5	
841	n-Nitrosodi-n-propylamine	μg/l	<5	
	Phenanthrene	μg/l	<5	
	Pyrene	μg/l	<10	
	2,3,7,8-TCDD	μg/l	< 0.00084	0.00003
846	1,2,4-Trichlorobenzene	μg/l	<5	70
	n-Nitrosodiphenylamine	μg/l	<1	
TEST	ACID EXTRACTIBLES	UNIT	January	LIMIT
845	2-Chlorophenol	μg/l	<5	
	2,4-Dichlorophenol	μg/l	<5	
	2.4-Dimethylphenol	μ <u>g</u> /l	<2	1
	2,4-Dinitrophenol	$\mu g/l$	<5	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l	<5	
	2-Nitrophenol	$\mu g/l$	<10	
	4-Nitrophenol	μg/l	<10	
	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/1 μg/1	<1	
	Pentachlorophenol	<u>μg/1</u> μg/l	<5	1
		μg/l	<1	
855				

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.35 2003 SEMIANNUAL DATA MONITORING WELL, MW22

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	January	June	December	Mean	Max	Min	LIMIT
151	pH	0-14		6.8	7.61	7.2	7.61	6.8	1
1S2	Temperature	°C		18.4	18.58	18.5	18.58	18.4	
1S3	Dissolved Oxygen	mg/l		5.41	7.13	6.27	7.13	5.41	
1 S 4	Electrical Conductivity	µmhos/cm		830	918	874	918	830	1600 ¹
900	Depth to Groundwater	ft	289.63	291.4	293.98	291.7	293.98	289.63	
C15	Total Petroleum Hydrocarbons	μg/l	<50	<60		<55	<60	<50	
155	Total Dissolved Solids	mg/l	576	612		594	612	576	1000^{2}
201	Ammonia	mg-N/l	<0.1	<0.1		<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	0.6		<0.4	0.60	<0.1	
204	Nitrate	mg-N/l	9.28	9.86		9.57	9.86	9.28	10 ³
205	Nitrite	mg-N/l	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	10^{3}
257	Sulfate	mg/l	75	76		76	76	75	500 4
301	Chloride	mg/l	59	94		77	94	59	500 4
	MBAS	mg/l	<0.1	<0.1		<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	910	650		780	910	650	
	Chloroform	μg/l	< 0.5	<0.5		< 0.5	<0.5	<0.5	
	Bromodichloromethane	μg/l	< 0.5	<0.5		<0.5	<0.5	< 0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5		<0.5	<0.5	< 0.5	
610	Bromoform	μg/l	<0.5	<0.5		<0.5	<0.5	< 0.5	
723	Sodium	mg/l	27.7	28.6		28.2	28.6	27.7	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.36 2003 ANNUAL DATA MONITORING WELL, MW22

TEST	MISCELLANEOUS PARAMETERS	UNIT	January	June		LIMIT
206	Total Cyanides	μg/l	<5	<5	1	200
312	Total Phenols	μg/l	<5	<50		
TEST	METALS	UNIT	January	June	December	LIMIT
703	Calcium	mg/l	114	120		
704	Magnesium	mg/l	21.8	24		
705	Arsenic	mg/l	0.001	< 0.001		0.05
706	Barium	mg/l	0.197	0.22		1
707	Aluminum	mg/l	0.91			1
708	Cadmium	mg/l	< 0.0004	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01	< 0.01		0.05
711	Cobalt	mg/l	< 0.01			
712	Copper	mg/l	< 0.008	< 0.008		1
713	Iron	mg/l	0.98	4.69	1.84	0.3
714	Lead	mg/l	< 0.002	0.002		
716	Manganese	mg/l	0.02	0.073	0.031	0.05
717	Mercury	mg/l	< 0.00004	< 0.00004		0.002
718	Nickel	mg/l	< 0.02	< 0.02		0.1
719	Potassium	mg/l	3.8	4.8		
720	Selenium	mg/l	< 0.001	< 0.001		0.05
722	Silver	mg/l	< 0.025	< 0.025		0.1
724	Zinc	mg/l	0.05	0.057		5
725	Antimony	mg/l	< 0.0005	0.0006		0.006
726	Beryllium	mg/l	< 0.0005	< 0.0005		0.004
732	Molybdenum	mg/l			< 0.04	
734	Thallium	mg/l	< 0.001	< 0.001		0.002
737	Vanadium	mg/l	< 0.02			

. 4.

TABLE 6.36 2003 ANNUAL DATA MONITORING WELL, MW22

TEST	PESTICIDES & PCBs	UNIT	January	June		LIMIT
502	PP'-DDE	μg/l	< 0.01	< 0.01		
	PP'-DDD	μg/l	<0.01	< 0.01		
	PP'-DDT	μg/l	<0.01	< 0.01		
	Alpha-BHC	μg/l	<0.01	<0.01		
	Lindane (Gamma-BHC)	μg/l	< 0.01	< 0.01		0.2
510	Heptachlor	μg/l	< 0.01	<0.01		0.01
	Heptachlor Epoxide	μg/l	<0.01	< 0.01		0.01
	Aldrin	μg/l	< 0.01	< 0.01		
513	Dieldrin	μg/l	<0.01	<0.01		
	Endrin	<u>μg/l</u>	<0.01 <0.5	<u><0.01</u> <0.5		$\frac{2}{3}$
	Toxaphene Aroclor 1242	μg/l μg/l	<0.1	<0.1		
	Aroclor 1242	μg/l μg/l	<0.05	<0.05		
523	Beta-BHC	μ <u>g/l</u>	<0.03	<0.01		
524	Delta-BHC	μg/1	<0.01	<0.01		
531	Endosulfan I	μg/l	< 0.01	< 0.01		
532	Endosulfan II	μg/l	< 0.01	< 0.01		· ····
	Endosulfan Sulfate	μg/1	<0.1	<0.1		
534		μg/1	< 0.01	< 0.01		
535	Aroclor 1016	μg/l	< 0.1	< 0.1		0.5
	Aroclor 1221	μg/l	< 0.1	<0.1		0.5
537	Aroclor 1232	μg/l	<0.1	<0.1		0.5
	Aroclor 1248	μg/l	<0.1	<0.1		0.5
	Aroclor 1260	μg/l	<0.1	<0.1		0.5
540	Technical Chlordane	μg/l	<0.05	< 0.05		0.1
TEST		UNIT	January	June		LIMIT
601	Methylene Chloride	μg/l	<0.5	<0.5		
603	1,1,1-Trichloroethane	μg/l	<0.5	<0.5	4	200
	Carbon Tetrachloride	μg/l	<0.5	<0.5	4	0.5
	1,1-Dichloroethene	μg/l	<0.5	<0.5	ł	<u>6</u> 5
	Trichloroethylene	<u>μg/l</u>	<0.5 <0.5	<0.5	4	5
	Tetrachloroethylene	μg/l μg/l	<0.5	<0.5	i	70
611	Chlorobenzene Vinyl Chloride	μg/1	<0.5	<0.5	1	0.5
612		$\mu g/l$	<0.5	<0.5		600
	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	<0.5	< 0.5		
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	< 0.5	< 0.5	1	5
	1,1-Dichloroethane	µg/l	< 0.5	< 0.5]	5
	1,1,2-Trichloroethane	μg/l	<0.5	< 0.5]	5
	1,2-Dichloroethane	μg/l	< 0.5	<0.5]	0.5
	Benzene	μg/1	< 0.5	<0.5	1	1
621	Toluene	μg/l	< 0.5	0.6	1	150
624	Ethyl Benzene	μg/l	< 0.5	<0.5	1	700
645	Trans-1,2-Dichloroethylene	μg/l	<0.5	<0.5	4	10
646	Bromomethane	μg/l	<1	<0.5	4	
	Chloroethane	ug/l	<0.5	<0.5	4	
	2-Chloroethylvinylether	μg/l	<0.5	<0.5	4	
649	Chloromethane	μg/1	<0.5	<0.5	4	5
650	1,2-Dichloropropane	μ <u>g/l</u>	<0.5	<0.5	4	0.5
651	Cis-1,3-Dichloropropene	<u>μg/l</u>	<0.5 <0.5	<0.5	4	0.5
652	Trans-1,3-Dichloropropene	<u>μg/l</u>	<0.5	<0.5	1	1
	1,1,2,2-Tetrachloroethane	μg/l μg/l	<0.5	<0.5	1	<u> </u>
	Acrolein	μg/l	<5	<2	1	
635	Acrylonitrile Methyl Tertiary Butyl Ether	μg/1	<0.5	<0.5	1	
1 662	Internyl Ternary Bulyl Ether	<u> </u>	<u> </u>	-0.5	J	

TABLE 6.36 2003 ANNUAL DATA MONITORING WELL, MW22

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	January	June		LIMIT
800	Acenaphthene	µg/l	<1	<1		···· ···
801	Acenaphthylene	μg/l	<10	<10		
	Anthracene	μg/l	<10	<10		
	Benzidine	μg/l	<5	<5		
804	Benzo(a)anthracene	μg/l	<5	<5		
	Benzo(a)pyrene	μg/l	<10	<10		0.2
806	Benzo(b)fluoranthene	μg/l	<10	<10		
807	1,12-Benzoperylene	μg/l	<5	<5		
808	Benzo(k)fluoranthene	μg/l	<10	<10		
	Bis(2-chloroethoxy)methane	_µg/l	<5	<5		
	Bis(2-Chloroethyl)ether	µg/l	<1	<1	-	
	Bis(2-chloroisopropyl)ether	ug/l	<2	<2		
	Bis(2-diethylhexyl)phthalate	µg/l	<5	<5		4
013	4-Bromophenyl Phenyl Ether	ug/l	<5	<5		
	Butylbenzyl Phthalate	<u>μg/l</u>	<10	<10		
	2-Chloronaphthalene	μg/l	<10 <5	<10		
	4-Chlorophenyl Phenyl Ether Chrysene	μg/l		<5		
<u><u>01/</u> <u><u>819</u></u></u>	1,2,5,6-Dibenzanthracene	<u>μg/l</u>	<10	<10		
	1,2,5,6-Dibenzanthracene	μg/]	<10 <2	<10 <2		
	1,3-Dichlorobenzene	μg/l μg/l	<1	<1		<u> </u>
	1,4-Dichlorobenzene	μg/l	<1	<1		
	3,3'-Dichlorobenzidine		<5	<5		
	Diethyl Phthalate	μg/l μg/l	<2	<2		
	Dimethyl Phthalate	μg/1 μg/l	<2	<2		
	Di-n-Butyl Phthalate	μg/l	<10	<10		
	2,4-Dinitrotoluene	$\frac{\mu g/l}{\mu g/l}$	<5	<5		
	2,6-Dinitrotoluene	μg/1 μg/1	<5	<5		
	Di-n-Octyl Phthalate	$\mu g/l$	<10	<10		
	1,2-Diphenylhydrazine	μg/l	<1	<1		
	Fluoranthene	$\mu g/l$	<1	<1		
	Fluorene	μ <u>ε/1</u>	<10	<10		
	Hexachlorobenzene	$\frac{\mu g}{l}$	<1	<1		1
	Hexachlorobutadiene	$\mu g/l$	<1	<1		
	Hexachlorocyclopentadiene	μg/l	<5	<5		50
	Hexachloroethane	μg/l	<1	<1		
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	<10		
	Isophorone	μg/l	<1	<1	1	
	Naphthalene	μg/l	<1	<1	1	
	Nitrobenzene	μg/l	<1	<1		
840	n-Nitrosodimethylamine	μg/l	<5	<5		
841	n-Nitrosodi-n-propylamine	μg/l	<5	<5		
842	Phenanthrene	µg/l	<5	<5		
843	Pyrene	µg/l	<10	<10		
	2,3,7,8-TCDD	µg/l	< 0.00076	<0.000043	1	0.00003
	1,2,4-Trichlorobenzene	µg/l	<5	<5	1	70
857	n-Nitrosodiphenylamine	µg/l	<1	<1	ł	
TEST	ACID EXTRACTIBLES	UNIT	January	June		LIMIT
	2-Chlorophenol	µg/l	<5	<5	l	
	2,4-Dichlorophenol	μg/l	<5	<5	1	
	2,4-Dimethylphenol	μg/l	<2	<2	l	
	2,4-Dinitrophenol	_μg/l	<5	<5	l	
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l	<5	<5	1	
	2-Nitrophenol	μg/l	<10	<10		
	4-Nitrophenol	µg/l	<10	<10	l	
	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	µg/l	<1	<1		
854	Pentachlorophenol	µg/l	<5	<5		1
855	Phenol	μg/l	<1	<1	ļ	
856	2,4,6-Trichlorophenol	μg/l	<10	<10		

TABLE 6.37 2003 SEMIANNUAL DATA **MONITORING WELL, MW23**

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	December	LIMIT
1S1	pH	0-14	7.7	
1S2	Temperature	°C	18.87	
1S3	Dissolved Oxygen	mg/l	4.74	
1S4	Electrical Conductivity	umhos/cm	385.7	1600 ¹
900	Depth to Groundwater	ft	310.6	
C15	Total Petroleum Hydrocarbons	μg/l	<50	
155	Total Dissolved Solids	mg/l	166	1000^{2}
201	Ammonia	mg-N/l	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	
204	Nitrate	mg-N/l	3.67	10 ³
205	Nitrite	mg-N/l	< 0.02	10 ³
257	Sulfate	mg/l	36	500 ⁴
301	Chloride	mg/l	37.6	500 ⁴
315	MBAS	mg/l	<0.1	0.50
405	Total Organic Carbon	μg/l	1700	
602	Chloroform	μg/l	<0.5	
608	Bromodichloromethane	μg/l	<0.5	
609	Dibromochloromethane	μg/l	<0.5	
610	Bromoform	μg/l	<0.5	
723	Sodium	mg/l	<82	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.38 2003 ANNUAL DATA MONITORING WELL, MW23

TEST	MISCELLANEOUS PARAMETERS	UNIT	December	LIMIT
206	Total Cyanides	μg/l	<5	200
312	Total Phenols	μg/l	<12	
TEST	ANNUAL MRP (METALS)	UNIT	December	LIMIT
703	Calcium	mg/l	43	
704	Magnesium	mg/l	<10	
705	Arsenic	mg/l	< 0.001	0.05
706	Barium	mg/l	0.067	1
707	Aluminum	mg/l		1
708	Cadmium	mg/l	< 0.0004	0.005
709	Total Chromium	mg/l	0.012	0.05
711	Cobalt	mg/l		
712	Copper	mg/l	< 0.008	1
713	Iron	mg/l	3.05	0.3
714	Lead	mg/l	0.009	
716	Manganese	mg/l	0.164	0.05
717	Mercury	mg/l	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	0.1
	Potassium	mg/l	<10.2	
720	Selenium	mg/l	< 0.001	0.05
722	Silver	mg/l	< 0.025	0.1
724	Zinc	mg/l	0.053	5
725	Antimony	mg/l	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	0.004
732	Molybdenum	mg/l		
734	Thallium	mg/l	< 0.001	0.002
737	Vanadium	mg/l		

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

.....

TABLE 6.38 2003 ANNUAL DATA MONITORING WELL, MW23

502PP-DDE504PP-DDD506PP-DDT508Alpha-BHC509Lindane (Gamma-BHC)510Heptachlor Epoxide511Heptachlor Epoxide512Aldrin513Dieldrin514Endrin515Toxaphene519Aroclor 1242520Aroclor 1254523Beta-BHC531Endosulfan I532Endosulfan I533Endosulfan Sulfate534Endrin Aldehyde535Aroclor 121537Aroclor 1232538Aroclor 1232538Aroclor 1232538Aroclor 1260540Technical ChlordaneTESTVOLATILE ORGANICS601Methylene Chloride6031,1-Trichloroethane604Carbon Tetrachloride6051,1-Dichlorobenzene (1,2-Dichlorobenzene)611Chlorobenzene (1,3-Dichlorobenzene)612Vinyl Chloride613o-Dichlorobenzene (1,4-Dichlorobenzene)614m-Dichlorobenzene (1,4-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane617Tetrachloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane6191,2-Dichloroethane620Benzene645Bromomethane646Bromomethane647Chloroethane6482-Chloroethylvinylether <th>μg/l</th> <th>December</th> <th>LIMIT</th>	μg/l	December	LIMIT
506 PP'-DDT 508 Alpha-BHC 509 Lindane (Gamma-BHC) 510 Heptachlor 511 Heptachlor Epoxide 512 Aldrin 513 Dieldrin 514 Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 602 1,1,1-Trichloroethane 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride		< 0.01	
508 Alpha-BHC 509 Lindane (Gamma-BHC) 510 Heptachlor 511 Heptachlor Epoxide 512 Aldrin 513 Dieldrin 514 Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 611 Chlorobenzene (1,3-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichloroben	μg/l	< 0.01	
509 Lindane (Gamma-BHC) 510 Heptachlor 511 Heptachlor Epoxide 512 Aldrin 513 Dieldrin 514 Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 602 1,1-Dichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethylene 606 Trichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorob	μg/l	< 0.01	
510 Heptachlor 511 Heptachlor Epoxide 512 Aldrin 513 Dieldrin 514 Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1.1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614	μg/l	< 0.01	
511 Heptachlor Epoxide 512 Aldrin 513 Dieldrin 514 Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1	μg/l	< 0.01	0.2
512 Aldrin 513 Dieldrin 514 Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethylene 610 Tetrachloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,	μg/l	< 0.01	0.01
513Dieldrin514Endrin515Toxaphene519Aroclor 1242520Aroclor 1254523Beta-BHC524Delta-BHC531Endosulfan I532Endosulfan Sulfate533Endosulfan Sulfate534Endrin Aldehyde535Aroclor 1016536Aroclor 1221537Aroclor 1232538Aroclor 1248539Aroclor 1260540Technical ChlordaneTESTVOLATILE ORGANICS601Methylene Chloride6031,1,1-Trichloroethane604Carbon Tetrachloride6051,1-Dichloroethane606Trichloroethylene611Chlorobenzene (1,2-Dichlorobenzene)612Vinyl Chloride613o-Dichlorobenzene (1,3-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene625Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylene647Chloroethane6482-Chloroethylene647Chloroethane6501,2-Dichloropenzene	μg/l	< 0.01	0.01
514Endrin 515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical ChlordaneTESTVOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 616 1,1-Dichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 624 Ethyl Benzene 624 Ethyl Benzene 645 Trans-1,2-Dichloroethylene 646 Bromomethane 647 Chloroethane 648 2-Chloroethylene 648 2-Chloroethane 650 1,2-Dichloropenzene	μg/l	< 0.01	
515 Toxaphene 519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 607 Tetrachloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 p-Dichlorobenzene (1,4-Dichlorobenzene) <td>μg/l</td> <td>< 0.01</td> <td>* *</td>	μg/l	< 0.01	* *
519 Aroclor 1242 520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan II 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 Dichlorobenzene (1,4-Dichlorobenzene) 618 1,1,2-Trichloroethane	μg/l	< 0.01	2
520 Aroclor 1254 523 Beta-BHC 524 Delta-BHC 531 Endosulfan II 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endorin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 611 Chlorobenzene 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 619 1,2-Dichloroethane 619 1,2-Dichloroethane 620 Benzene 621	μg/l	<0.5	3
523 Beta-BHC 524 Delta-BHC 531 Endosulfan II 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethylene 606 Trichloroethylene 607 Tetrachloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 619 1,2-Dichloroethane 619 1,2-Dichloroethane 620 Benzene	μg/l	<0.1	
523 Beta-BHC 524 Delta-BHC 531 Endosulfan II 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 618 1,1,2-Trichloroethane 620 Benzene 621 Toluene 622 Benzene 624 </td <td>μg/l</td> <td><0.05</td> <td></td>	μg/l	<0.05	
524 Delta-BHC 531 Endosulfan I 532 Endosulfan Sulfate 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 607 Tetrachloroethylene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 Dichlorobenzene (1,4-Dichlorobenzene) 618 1,1,2-Trichloroethane 620 Benzene 621 Toluene	μg/l	<0.01	
531 Endosulfan I 532 Endosulfan II 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 607 Tetrachloroethylene 610 Chlorobenzene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 622 Bromomethane	μg/l	<0.01	
532 Endosulfan II 533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 607 Tetrachloroethylene 608 o-Dichlorobenzene (1,2-Dichlorobenzene) 611 Chlorobenzene (1,3-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 622 Endyl Benzene 643 Trans-1,2-Dichloroet	μg/1	<0.01	
533 Endosulfan Sulfate 534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 607 Tetrachloroethylene 608 Orichlorobenzene (1,2-Dichlorobenzene) 611 Chlorobenzene (1,3-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,4-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 619 1,2-Dichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 624 Ethyl Benzene <	μg/l	<0.01	
534 Endrin Aldehyde 535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 607 Tetrachloroethylene 608 Trichloroethylene 611 Chlorobenzene 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 618 1,1,2-Trichloroethane 620 Benzene 621 Toluene 622 Benzene 633 Trans-1,2-Dichloroethylene 646 Bromomethane 647 Chloroethane 648	μg/1	<0.1	
535 Aroclor 1016 536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 607 Tetrachloroethylene 611 Chlorobenzene 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 1,2-Trichloroethane 618 1,1,2-Trichloroethane 620 Benzene 621 Toluene 622 Entyl Benzene 643 Trans-1,2-Dichloroethylene 644 Bromomethane 647 Chloroethane 648 2-Chloroethylvinylether	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμ	<0.01	
536 Aroclor 1221 537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 607 Tetrachloroethylene 611 Chlorobenzene 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,3-Dichlorobenzene) 616 1,1-Dichloroethane 617 1,2-Dichloroethane 618 1,1,2-Trichloroethane 620 Benzene 621 Toluene 622 Ethyl Benzene 643 Trans-1,2-Dichloroethylene 644 Bromomethane 645 Trans-1,2-Dichloroethylene 646 Bromomethane 647			0.5
537 Aroclor 1232 538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 607 Tetrachloroethylene 610 Chlorobenzene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 p-Dichloroethane 618 1,1,2-Trichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 622 Ethyl Benzene 634 Ethyl Benzene 645 Tras-1,2-Dichloroethylene 646 Bromomethane <td< td=""><td>μ<u>g/l</u></td><td><0.1</td><td>0.5</td></td<>	μ <u>g/l</u>	<0.1	0.5
538 Aroclor 1248 539 Aroclor 1260 540 Technical Chlordane VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethane 606 Trichloroethylene 607 Tetrachloroethylene 610 Chlorobenzene 611 Chlorobenzene (1,2-Dichlorobenzene) 612 Vinyl Chloride 613 o-Dichlorobenzene (1,3-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 618 1,1,2-Trichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 622 Ethyl Benzene 645 Trans-1,2-Dichloroethylene 646 Bromomethane 647 Chloroethane 648 2-Chloroethylvinylether 649 Chloromethane 650 1,2-Dichloropropane </td <td>μ<u>g/l</u></td> <td><0.1</td> <td>0.5</td>	μ <u>g/l</u>	<0.1	0.5
539 Aroclor 1260 540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 607 Tetrachloroethylene 610 Chlorobenzene 611 Chlorobenzene 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 p-Dichlorobenzene (1,4-Dichlorobenzene) 618 1,2-Trichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 622 Ethyl Benzene 645 Trans-1,2-Dichloroethylene 646 Bromomethane 647 Chloroethane 648 2-Chloroethylvinylether 649 Chloromethane 650 1,2-Dichloro	μg/l	<0.1	0.5
540 Technical Chlordane TEST VOLATILE ORGANICS 601 Methylene Chloride 603 1,1,1-Trichloroethane 604 Carbon Tetrachloride 605 1,1-Dichloroethene 606 Trichloroethylene 607 Tetrachloroethylene 611 Chlorobenzene 612 Vinyl Chloride 613 o-Dichlorobenzene (1,2-Dichlorobenzene) 614 m-Dichlorobenzene (1,3-Dichlorobenzene) 615 p-Dichlorobenzene (1,4-Dichlorobenzene) 616 1,1-Dichloroethane 617 p-Dichlorobenzene (1,4-Dichlorobenzene) 618 1,2-Trichloroethane 619 1,2-Dichloroethane 620 Benzene 621 Toluene 622 Ethyl Benzene 645 Trans-1,2-Dichloroethylene 646 Bromomethane 647 Chloroethane 648 2-Chloroethylvinylether 649 Chloromethane 650 1,2-Dichloropropane	μ <u>g/l</u>	<0.1	0.5
TESTVOLATILE ORGANICS601Methylene Chloride6031,1,1-Trichloroethane604Carbon Tetrachloride6051,1-Dichloroethene606Trichloroethylene607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	µg/l	<0.1	0.5
601Methylene Chloride6031,1,1-Trichloroethane604Carbon Tetrachloride6051,1-Dichloroethene606Trichloroethylene607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylinylether649Chloromethane	μg/l	< 0.05	0.1
6031,1,1-Trichloroethane604Carbon Tetrachloride6051,1-Dichloroethene606Trichloroethylene607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	UNIT	December	LIMIT
604Carbon Tetrachloride6051,1-Dichloroethene606Trichloroethylene607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	μg/l	<0.5	
6051,1-Dichloroethene606Trichloroethylene607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	μg/l	< 0.5	200
606Trichloroethylene607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	μg/l	< 0.5	0.5
607Tetrachloroethylene611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	μg/l	<0.5	6
611Chlorobenzene612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichlorobenzene (1,4-Dichlorobenzene)6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	5
612Vinyl Chloride613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichlorobenzene (1,4-Dichlorobenzene)6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	5
613o-Dichlorobenzene (1,2-Dichlorobenzene)614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethane649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	70
614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/]	< 0.5	0.5
614m-Dichlorobenzene (1,3-Dichlorobenzene)615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	< 0.5	600
615p-Dichlorobenzene (1,4-Dichlorobenzene)6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane		< 0.5	
6161,1-Dichloroethane6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane	μg/1	< 0.5	5
6181,1,2-Trichloroethane6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	5
6191,2-Dichloroethane620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	5
620Benzene621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	0.5
621Toluene624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	<0.5	1
624Ethyl Benzene645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	150
645Trans-1,2-Dichloroethylene646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/1	<0.5	700
646Bromomethane647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/1	<0.5	10
647Chloroethane6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	μg/1	<0.5	10
6482-Chloroethylvinylether649Chloromethane6501,2-Dichloropropane	µg/1 µg/1	<0.5	
649Chloromethane6501,2-Dichloropropane	μg/l	<0.5	
650 1,2-Dichloropropane	μg/l	<0.5	
		<0.5	5
	μg/1		
	μg/1	<0.5	0.5
652 Trans-1,3-Dichloropropene	1	<0.5	0.5
653 1,1,2,2-Tetrachloroethane	μ <u>g/l</u>	<0.5	
654 Acrolein	μg/l	<2	
655 Acrylonitrile 662 Methyl Tertiary Butyl Ether		<2	

TABLE 6.38 2003 ANNUAL DATA MONITORING WELL, MW23

.

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	December	LIMIT
800	Acenaphthene	μg/l	<1	
801	Acenaphthylene	μg/l	<10	
802	Anthracene	μg/l	<10	
803	Benzidine	μg/l	<5	
	Benzoanthracene	μg/l	<5	
805	Benzopyrene	μg/1	<10	0.2
	Benzo(b)fluoranthene	μg/l	< 0.02	
	1,12-Benzoperylene	µg/l	<5	
	Benzo(k)fluoranthene	µg/l	< 0.02	
	Bis(2-chloroethoxy)methane	μg/l	<5	•
	Bis(2-Chloroethyl)ether	μg/1	<1	
811	Bis(2-chloroisopropyl)ether	μg/l	<2	
	Bis(2-diethylhexyl)phthalate	μg/l	<2	4
	4-Bromophenyl Phenyl Ether	μg/l	<5	
814	Butylbenzyl Phthalate	μg/l	<10	
815	2-Chloronaphthalene	μg/l	<10	
816	4-Chlorophenyl Phenyl Ether	μg/l	<5	
817	Chrysene	μg/l	< 0.02	
818	1,2,5,6-Dibenzanthracene	μg/l	< 0.02	
819	1,2-Dichlorobenzene	μg/l	<2	
820	1,3-Dichlorobenzene	μg/l	<1	
821	1,4-Dichlorobenzene	μg/l	<1	
822	3,3'-Dichlorobenzidine	$\mu g/l$	<5	
823	Diethyl Phthalate	μg/l	<2	
	Dimethyl Phthalate	µg/l	<2	
825	Di-n-Butyl Phthalate	μg/l	<10	
826	2,4-Dinitrotoluene	μ <u>g</u> /l	<5	
827	2,6-Dinitrotoluene	$\mu g/l$	<5	
828	Di-n-Octyl Phthalate	$\mu g/l$	<10	
	1,2-Diphenylhydrazine	μg/1	<1	
830	Fluoranthene	μ <u>ε/1</u>	<1	
831	Fluorene	$\mu g/l$	<10	<u> </u>
	Hexachlorobenzene	$\mu g/l$	<1	<u> </u>
833	Hexachlorobutadiene	$\mu g/l$	<1	
834	Hexachlorocyclopentadiene	$\frac{\mu g/l}{\mu g/l}$	<5	50
835	Hexachloroethane	μg/1	<1	
	Indeno(1,2,3-c,d)pyrene	μ <u>g/1</u>	<0.02	
837	Isophorone	$\frac{\mu g/l}{\mu g/l}$	<1	
838	Naphthalene	$\frac{\mu g/l}{\mu g/l}$	<1	
		the second s	<1	
840	Nitrobenzene	<u>μg/l</u>	<1	<u> </u>
<u>840</u> 841		<u>μg/l</u>	<u><</u>	
841	n-Nitrosodi-n-propylamine Phenanthrene	<u>μg/l</u>		<u> </u>
		μg/]	<5	_
843		μg/Ī	<10	
	2,3,7,8-TCDD	<u>µg/l</u>	<0.00086	0.00003
846	1,2,4-Trichlorobenzene	<u>μg/l</u>	<5	70
857	n-Nitrosodiphenylamine	<u>μg/l</u>	<1	
TEST	ACID EXTRACTIBLES	UNIT	December	
845	2-Chlorophenol	μ <u>g/l</u>	<5	
	2,4-Dichlorophenol	μ <u>g/l</u>	<5	
	2,4-Dimethylphenol	μ <u>g/l</u>	<2	
	2,4-Dinitrophenol	µg/l	<5	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μ <u>g/</u>]	<5	
851	2-Nitrophenol	μg/l	<10	
852	4-Nitrophenol	μg/l	<10	
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/]	<1	
854	Pentachlorophenol	μg/1	<5	1
	Phenol	μg/l	<1	
856	2,4,6-Trichlorophenol	μg/l	<10	

TABLE 6.39 2003 SEMIANNUAL DATA MONITORING WELL, MW25

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	January	February	December	Mean	Max	Min	LIMIT
1S1	pH	0-14			7.66	7.66	7.66	7.66	
1S2	Temperature	°C			22.21	22.21	22.21	22.21	1
1S3	Dissolved Oxygen	mg/l			3.77	3.77	3.77	3.77	1
1S4	Electrical Conductivity	µmhos/cm			452	452	452	452	1600 1
900	Depth to Groundwater	ft	329.50	331.72	331.09	330.77	331.72	329.50	1.1000
C15	Total Petroleum Hydrocarbons	μg/l	<50		<50	<50	<50	<50	1
155	Total Dissolved Solids	mg/l	296	333	293	307	333	293	1000 ²
201	Ammonia	mg-N/l	<0.1		<0.1	<0.1	<0.1	<0.1	1
	Kjeldahl Nitrogen	mg-N/l	<0.1		<0.1	<0.1	<0.1	<0.1	1
204	Nitrate	mg-N/l	6.32	5.60	7.60	6.51	7.60	5.60	10^{3}
205	Nitrite	mg-N/l	0.03	< 0.02	<0.02	< 0.02	0.03	< 0.02	10^{3}
257	Sulfate	mg/l	38.0		33.7	35.9	38.0	33.7	500 ⁴
301	Chloride	mg/l	39		35	37	39	35	500 ⁴
315	MBAS	mg/l	<0.1		<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	µg/l	630		630	630	630	630	
602	Chloroform	μg/l	<0.5		<0.5	<0.5	<0.5	<0.5	1 1
	Bromodichloromethane	μg/l	<0.5		<0.5	<0.5	<0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5		<0.5	<0.5	<0.5	<0.5	
	Bromoform	μg/l	<0.5		< 0.5	<0.5	< 0.5	<0.5	
723	Sodium	mg/l	39.3		40.0	39.7	40.0	39.3	11

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.40 2003 ANNUAL DATA MONITORING WELL, MW25

TEST	MISCELLANEOUS PARAMETERS	UNIT	January	December	LIMIT
206	Total Cyanides	μg/l	<5	<5	200
312	Total Phenols	μg/l	<6	<11	
TEST	METALS	UNIT	January	December	LIMIT
703	Calcium	mg/l	53	48.2	
704	Magnesium	mg/l	65.2	6.5	
705	Arsenic	mg/l	< 0.001	< 0.001	0.05
706	Barium	mg/l	0.056	0.057	1
707	Aluminum	mg/l	0.1		1
708	Cadmium	mg/l	< 0.0004	< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	< 0.01	0.05
711	Cobalt	mg/l	< 0.01		
712	Copper	mg/l	< 0.008	< 0.008	1
713	Iron	mg/l	0.11	< 0.05	0.3
714	Lead	mg/l	< 0.002	< 0.002	
716	Manganese	mg/l	< 0.005	< 0.005	0.05
	Mercury	mg/l	< 0.00004	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	< 0.02	0.1
719	Potassium	mg/l	2.6	<10	
720	Selenium	mg/l	< 0.001	< 0.001	0.05
722	Silver	mg/l	< 0.025	< 0.025	0.1
724	Zinc	mg/l	0.04	0.016	5
725	Antimony	mg/l	< 0.0005	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	< 0.0005	0.004
732	Molybdenum	mg/l		< 0.04	
734	Thallium	mg/l	< 0.001	< 0.001	0.002
737	Vanadium	mg/l	< 0.02		

TABLE 6.40 2003 ANNUAL DATA MONITORING WELL, MW25

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST	PESTICIDES & PCBs	UNIT	January	December	LIMIT
506 Pr-DDT $\mu g/l$ < 0.01 < 0.01 508 Alpha-BHC $\mu g/l$ < 0.01 < 0.01 510 Lindane (Gamma-BHC) $\mu g/l$ < 0.01 < 0.01 510 Heptachlor $\mu g/l$ < 0.01 < 0.01 511 Heptachlor Exocide $\mu g/l$ < 0.01 < 0.01 512 Aldrin $\mu g/l$ < 0.01 < 0.01 513 Dieldrin $\mu g/l$ < 0.01 < 0.01 514 Endrin $\mu g/l$ < 0.01 < 0.01 515 Toxahene $\mu g/l$ < 0.01 < 0.01 523 Beta BHC $\mu g/l$ < 0.01 < 0.01 523 Beta BHC $\mu g/l$ < 0.01 < 0.01 534 Deta-BHC $\mu g/l$ < 0.01 < 0.01 532 Beta BHC $\mu g/l$ < 0.01 < 0.01 533 Endosulfan 1 $\mu g/l$ < 0.01 < 0.01 <t< td=""><td></td><td></td><td>μg/l</td><td>< 0.01</td><td>< 0.01</td><td></td></t<>			μg/l	< 0.01	< 0.01	
508 Alpha-BHC $\mu_{g/l}$ < 0.01 < 0.01 509 Lindare (Gamma-BHC) $\mu_{g/l}$ < 0.01 < 0.01 510 Heptachlor $\mu_{g/l}$ < 0.01 < 0.01 511 Heptachlor Depoxide $\mu_{g/l}$ < 0.01 < 0.01 512 Aldrin $\mu_{g/l}$ < 0.01 < 0.01 513 Dieldrin $\mu_{g/l}$ < 0.01 < 0.01 514 Endrin $\mu_{g/l}$ < 0.01 < 0.01 513 Dieldrin $\mu_{g/l}$ < 0.01 < 0.01 520 Arcolor 1242 $\mu_{g/l}$ < 0.01 < 0.01 521 Baldran 1 $\mu_{g/l}$ < 0.01 < 0.01 522 Endosulfan 1 $\mu_{g/l}$ < 0.01 < 0.01 532 Endosulfan Sulfate $\mu_{g/l}$ < 0.01 < 0.01 533 Arcolor 1221 $\mu_{g/l}$ < 0.1 < 0.1 534 Arcolor 1224 $\mu_{g/l}$ < 0.1			μg/l	< 0.01	< 0.01	
509 Lindame (Gamma-BHC) $\mu g/l$ <0.01			μg/l		< 0.01	
509 Lindare (Gamma-BHC) $\mu g/l$ <0.01		Alpha-BHC	μg/l	< 0.01	< 0.01	
S11 Hentachlor Epoxide $\mu g/l$ < 0.01 < 0.01 S12 Aldrin $\mu g/l$ < 0.01 < 0.01 S13 Dieldrin $\mu g/l$ < 0.01 < 0.01 S14 Endrin $\mu g/l$ < 0.01 < 0.01 S15 Toxahene $\mu g/l$ < 0.05 < 0.05 S19 Aroclor 1254 $\mu g/l$ < 0.01 < 0.01 S20 Aroclor 1254 $\mu g/l$ < 0.01 < 0.01 S21 Beta-BHC $\mu g/l$ < 0.01 < 0.01 S22 Endosulfan II $\mu g/l$ < 0.01 < 0.01 S32 Endosulfan Sulfate $\mu g/l$ < 0.01 < 0.01 S33 Endosulfan Sulfate $\mu g/l$ < 0.01 < 0.01 S34 Endrin Aldebyde $\mu g/l$ < 0.01 < 0.01 S35 Aroclor 1221 $\mu g/l$ < 0.1 < 0.1 S38 Aroclor 1232 $\mu g/l$ < 0.1 < 0.1		Lindane (Gamma-BHC)	μg/l	< 0.01		0.2
511 Heptachlor Epoxide $\mu g/l$ <0.01		Heptachlor	μg/l	< 0.01	< 0.01	0.01
512 Aldrin $\mu g/l$ <0.01				< 0.01		0.01
513 Dieldrin $\mu g/l$ <0.01				< 0.01		
514 Endrin $\mu g/l$ <0.01		Dieldrin	ug/l			
515 Toxaphene $\mu g/l$ <0.5	514	Endrin				2
519 Aroclor 1242 $\mu g/l$ <0.1	515	Toxaphene		< 0.5		3
520 Areclor 1254 $\mu g/l$ < 0.05 $< c0.05$ 523 Beta-BHC $\mu g/l$ < 0.01 < 0.01 524 Detta-BHC $\mu g/l$ < 0.01 < 0.01 531 Endosulfan I $\mu g/l$ $< < 0.01$ $< < 0.01$ 532 Endosulfan Sulfate $\mu g/l$ $< < 0.01$ $< < 0.01$ 533 Endosulfan Sulfate $\mu g/l$ $< < 0.01$ $< < < 0.01$ 534 Endrin Aldehyde $\mu g/l$ $< < < > 0.01$ $< < < > < < > 0.01$ 535 Arcolor 1016 $\mu g/l$ $< < < > < < > 0.1$ $< < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < < > < < > < < < > < < < > < < > < < < < < > < < > < < < > < < < < > < < > < < > < < < > < < > < < > < < < > < < < > < < > < < < > < < < > < < < > < < < < > < < < > < < < < > < < < < < > < < < < < > < < < < > < < < < > < < < < < < < > < < < < > < < < < < < < > < < < < > < < < < < < < > < < < < < > < < < < < < < > < < < > < < < < > < < < > < < < < < < < < < < < < < > < < < < < < < < > < < < < < < < < < < < > < < < < < < > < < < < < < < < < > < < < < < < < < < < < < < < < < < > < < < < < < < < < < < > < < < < < < < < < < < > < < < < < < < < < < < < < < < < < > < < < < < < < < < < < < < < < < < < < <$	519	Aroclor 1242				
523 Beta-BHC $\mu g/l$ <0.01 <0.01 534 Delta-BHC $\mu g/l$ <0.01	520	Aroclor 1254			<0.05	
524 Delta-BHC $\mu g/l$ <0.01 <0.01 531 Endosulfan I $\mu g/l$ <0.01						-
531 Endosulfan I $\mu g/l$ <0.01 <0.01 532 Endosulfan II $\mu g/l$ <0.01 <0.01 533 Endosulfan Sulfate $\mu g/l$ <0.01 <0.01 534 Endrin Aldehyde $\mu g/l$ <0.01 <0.01 535 Arcolor 1016 $\mu g/l$ <0.1 <0.1 536 Arcolor 1221 $\mu g/l$ <0.1 <0.1 538 Arcolor 1232 $\mu g/l$ <0.1 <0.1 539 Arcolor 1248 $\mu g/l$ <0.1 <0.1 540 Technical Chlordane $\mu g/l$ <0.5 <0.5 601 Methylene Chloride $\mu g/l$ <0.5 <0.5 603 1.1.1-Trichloroethane $\mu g/l$ <0.5 <0.5 604 Carbon Tetrachloride $\mu g/l$ <0.5 <0.5 606 Trichloroethylene $\mu g/l$ <0.5 <0.5 611 Chlorobenzene (1,2-Dichlorobenzene) $\mu g/l$ <0.5						
532 Endosulfan II $\mu g/l$ <0.01						
533 Endosulfan Sulfate $\mu g/l$ <0.1						
534 Endrin Aldehyde $\mu g/l$ <0.01 <0.01 535 Arcoclor 1016 $\mu g/l$ <0.1						+
535 Aroclor 1016 $\mu g/l$ <0.1						
536 Aroclor 1221 $\mu g/l$ <0.1						0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.5
540 Technical Chlordane $\mu g/l$ <0.05 <0.05 TEST VOLATILE ORGANICS UNIT January December 601 Methylene Chloride $\mu g/l$ <0.5						0.5
TEST VOLATILE ORGANICS UNIT January December 601 Methylene Chloride $\mu g/l$ <0.5						0.5
601 Methylene Chloride $\mu g/l$ <0.5 <0.5 603 1.1.1-Trichloroethane $\mu g/l$ <0.5		Technical Chlordane	μg/l	<0.05	<0.05	0.1
603 1,1,1-Trichloroethane $\mu g/l$ <0.5 <0.5 604 Carbon Tetrachloride $\mu g/l$ <0.5 <0.5 605 1,1-Dichloroethene $\mu g/l$ <0.5 <0.5 606 Trichloroethylene $\mu g/l$ <0.5 <0.5 607 Tetrachloroethylene $\mu g/l$ <0.8 <0.8 611 Chlorobenzene $\mu g/l$ <0.5 <0.5 612 Vinyl Chloride $\mu g/l$ <0.5 <0.5 613 o-Dichlorobenzene (1,2-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 614 m-Dichlorobenzene (1,3-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 614 m-Dichlorobenzene (1,4-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 616 1,1-Dichloroethane $\mu g/l$ <0.5 <0.5 618 1,1,2-Trichloroethane $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 645 Trans-1,2-Dichloroethylene $\mu g/l$			UNIT	January	December	LIMIT
604 Carbon Tetrachloride $\mu g/l$ <0.5						
605 1,1-Dichloroethene $\mu g/l$ <0.5 <0.5 606 Trichloroethylene $\mu g/l$ <0.5						200
606 Trichloroethylene $\mu g/l$ <0.5 <0.5 607 Tetrachloroethylene $\mu g/l$ 0.8 0.8 611 Chlorobenzene $\mu g/l$ <0.5						0.5
607 Tetrachloroethylene $\mu g/l$ 0.8 0.8 611 Chlorobenzene $\mu g/l$ <0.5			μg/1			6
611 Chlorobenzene $\mu g/l$ <0.5 <0.5 612 Vinyl Chloride $\mu g/l$ <0.5 <0.5 613 o-Dichlorobenzene (1,2-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 614 m-Dichlorobenzene (1,3-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 615 p-Dichlorobenzene (1,4-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 616 1,1-Dichloroethane $\mu g/l$ <0.5 <0.5 616 1,1-Dichloroethane $\mu g/l$ <0.5 <0.5 618 1,1,2-Trichloroethane $\mu g/l$ <0.5 <0.5 619 1,2-Dichloroethane $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 644 Bromomethane $\mu g/l$ <0.5 <0.5 644 Bromomethane $\mu g/l$ <0.5 <0.5 644 Bromomethane<			μg/ł		< 0.5	5
612 Vinyl Chloride $\mu g/l$ <0.5			μg/1	0.8		5
613 o-Dichlorobenzene (1,2-Dichlorobenzene) $\mu g/l$ <0.5					< 0.5	70
614 m-Dichlorobenzene (1,3-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 615 p-Dichlorobenzene (1,4-Dichlorobenzene) $\mu g/l$ <0.5 <0.5 616 1,1-Dichloroethane $\mu g/l$ <0.5 <0.5 618 1,1,2-Trichloroethane $\mu g/l$ <0.5 <0.5 619 1,2-Dichloroethane $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 624 Ethyl Benzene $\mu g/l$ <0.5 <0.5 645 Trans-1,2-Dichloroethylene $\mu g/l$ <0.5 <0.5 6446 Bromomethane $\mu g/l$ <0.5 <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 <0.5 648			μg/1		< 0.5	0.5
615p-Dichlorobenzene (1,4-Dichlorobenzene) $\mu g/l$ <0.5<0.56161,1-Dichloroethane $\mu g/l$ <0.5		o-Dichlorobenzene (1,2-Dichlorobenzene)			< 0.5	600
616 1,1-Dichloroethane $\mu g/l$ <0.5 <0.5 618 1,1,2-Trichloroethane $\mu g/l$ <0.5 <0.5 619 1,2-Dichloroethane $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 624 Ethyl Benzene $\mu g/l$ <0.5 <0.5 645 Trans-1,2-Dichloroethylene $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 648 2-Chloroethylvinylether $\mu g/l$ <0.5 <0.5 649 Chloropropane $\mu g/l$ <0.5 <0.5 650 1,2-Dichloropropane $\mu g/l$ <0.5			μg/l		< 0.5	
618 1,1,2-Trichloroethane $\mu g/l$ <0.5 <0.5 619 1,2-Dichloroethane $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 624 Ethyl Benzene $\mu g/l$ <0.5 <0.5 645 Trans-1,2-Dichloroethylene $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 648 2-Chloroethylvinylether $\mu g/l$ <0.5 <0.5 649 Chloromethane $\mu g/l$ <0.5 <0.5 650 1,2-Dichloropropane $\mu g/l$ <0.5 <0.5 651 Cis-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 652 Trans-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 653 1,1,2,2-Tetrachloroethane μg			μg/l			5
618 1,1,2-Trichloroethane $\mu g/l$ <0.5 <0.5 619 1,2-Dichloroethane $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 620 Benzene $\mu g/l$ <0.5 <0.5 621 Toluene $\mu g/l$ <0.5 <0.5 624 Ethyl Benzene $\mu g/l$ <0.5 <0.5 645 Trans-1,2-Dichloroethylene $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 648 2-Chloroethylvinylether $\mu g/l$ <0.5 <0.5 648 2-Chloroethane $\mu g/l$ <0.5 <0.5 650 1,2-Dichloropropane $\mu g/l$ <0.5 <0.5 651 Cis-1,3-Dichloropropene $\mu g/l$ <0.5			μg/l			5
619 1,2-Dichloroethane $\mu g/l$ <0.5					< 0.5	5
621Toluene $\mu g/l$ <0.5<0.5624Ethyl Benzene $\mu g/l$ <0.5			μg/l			0.5
621 Toluene $\mu g/l$ <0.5 <0.5 624 Ethyl Benzene $\mu g/l$ <0.5	620	Benzene	μg/l	< 0.5	< 0.5	1
645 Trans-1,2-Dichloroethylene $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 648 2-Chloroethylvinylether $\mu g/l$ <0.5 <0.5 649 Chloromethane $\mu g/l$ <0.5 <0.5 650 1,2-Dichloropropane $\mu g/l$ <0.5 <0.5 651 Cis-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 652 Trans-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 653 1,1,2,2-Tetrachloroethane $\mu g/l$ <0.5 <0.5						150
645 Trans-1,2-Dichloroethylene $\mu g/l$ <0.5 <0.5 646 Bromomethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 647 Chloroethane $\mu g/l$ <0.5 <0.5 648 2-Chloroethylvinylether $\mu g/l$ <0.5 <0.5 649 Chloromethane $\mu g/l$ <0.5 <0.5 650 1,2-Dichloropropane $\mu g/l$ <0.5 <0.5 651 Cis-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 652 Trans-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 653 1,1,2,2-Tetrachloroethane $\mu g/l$ <0.5 <0.5	624	Ethyl Benzene	μg/l	<0.5	< 0.5	700
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			μg/1	<0.5		10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				< 0.5	< 0.5	
648 2-Chloroethylvinylether $\mu g/l$ <0.5 <0.5 649 Chloromethane $\mu g/l$ <0.5 <0.5 650 1,2-Dichloropropane $\mu g/l$ <0.5 <0.5 651 Cis-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 652 Trans-1,3-Dichloropropene $\mu g/l$ <0.5 <0.5 653 1,1,2,2-Tetrachloroethane $\mu g/l$ <0.5 <0.5		Chloroethane	με/1		< 0.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	648	2-Chloroethylvinylether				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Chloromethane		< 0.5	< 0.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			μg/1	< 0.5		5
652 Trans-1,3-Dichloropropene μg/l <0.5 <0.5 653 1,1,2,2-Tetrachloroethane μg/l <0.5						0.5
653 1,1,2,2-Tetrachloroethane μg/l <0.5 <0.5	652	Trans-1.3-Dichloropropene		<0.5		0.5
	653	1.1.2.2-Tetrachloroethane				1
$\frac{1}{655} \text{ Acrylonitrile} \qquad \qquad \mu g/l \qquad <5 \qquad <2$		Acrylonitrile				
$\frac{1}{662} \text{ Methyl Tertiary Butyl Ether} \qquad \qquad \mu g/l \qquad \qquad$		Methyl Tertiary Butyl Ether				

TABLE 6.40 2003 ANNUAL DATA MONITORING WELL, MW25

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	January	December	LIMIT
800	Acenaphthene	μg/l	<1	<1	1
	Acenaphthylene	μg/l	<10	<10	
	Anthracene	μg/l	<10	<10	
	Benzidine	μg/]	<5	<5	
804	Benzo(a)anthracene	μg/l	<5	<5	
805	Benzo(a)pyrene	μg/l	<10	< 0.02	0.2
806	Benzo(b)fluoranthene	µg/l	<10	< 0.02	
807	1,12-Benzoperylene	μg/]	<5	<5	
808	Benzo(k)fluoranthene	μg/l	<10	<10	
	Bis(2-chloroethoxy)methane	μg/l	<5	<5	
	Bis(2-Chloroethyl)ether	μg/l	<1	<1	
	Bis(2-chloroisopropyl)ether	μg/l	<2	<2	
	Bis(2-diethylhexyl)phthalate	μg/l	<5	<5	4
	4-Bromophenyl Phenyl Ether	μg/l	<5	<5	
	Butylbenzyl Phthalate	μg/l	<10	<10	
	2-Chloronaphthalene	μg/l	<10	<10	
	4-Chlorophenyl Phenyl Ether	$\mu g/l$	<5	<5	
	Chrysene	μg/i	<10	<0.02	
	1,2,5,6-Dibenzanthracene	μg/i μg/l	<10	<0.02	
	1,2,5,6-Dibenzanthracene		<10	<0.02	
		μg/l			
	1,3-Dichlorobenzene	μg/l	<1	<1	
	1,4-Dichlorobenzene	μg/l	<1	<1	
	3,3'-Dichlorobenzidine	µg/l	<5	<5	
	Diethyl Phthalate	μg/ì	<2	<2	1
	Dimethyl Phthalate	μg/l	<2	<2	_
825	Di-n-Butyl Phthalate	μg/l	<10	<10	
826	2,4-Dinitrotoluene	μg/l	<5	<5	
	2,6-Dinitrotoluene	μg/l	<5	<5	
	Di-n-Octyl Phthalate	μg/l	<10	<10	
829	1,2-Diphenylhydrazine	μg/l	<1	<]	
	Fluoranthene	μg/l	<1	<1	
831	Fluorene	μg/l	<10	<10	
	Hexachlorobenzene	μg/l	<1	<1	1
	Hexachlorobutadiene	µg/l	<1	<]	
	Hexachlorocyclopentadiene	μg/l	<5	<5	50
	Hexachloroethane	μg/l	<1	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	<10	< 0.02	
	Isophorone	μg/l	<1	<1	
	Naphthalene	μg/l	<1	<1	
	Nitrobenzene	μ <u>ε/</u> ι	<1	<1	-
	n-Nitrosodimethylamine	μ <u>e</u> /1 μg/l	<5	<5	
	n-Nitrosodi-n-propylamine	μg/1 μg/1	<5	<5	
	Phenanthrene	μg/I μg/I	<5	<5	
	Pyrene	μg/I μg/I	<10	<10	
043	2,3,7,8-TCDD	μg/1 μg/1	<0.00052	<0.0011	0.00003
			<0.00032	<5	70
846	1,2,4-Trichlorobenzene n-Nitrosodiphenylamine	<u>μg/l</u>	<1	<1	
857		μg/l			
TEST		UNIT	January	December	LIMIT
845	2-Chlorophenol	μg/l	<5	<5	
847	2,4-Dichlorophenol	µg/l	<5	<5	+
	2,4-Dimethylphenol	μg/l	<2	<2	
	2,4-Dinitrophenol	μg/l	<5	<5	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/]	<5	<5	
851	2-Nitrophenol	μg/l	<10	<10	
852	4-Nitrophenol	μg/l	<10	<10	
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/l	<1	<1	
854	Pentachlorophenol	μg/l	<5	<5	1
	Phenol	μg/l	<1	<1	
856	2,4,6-Trichlorophenol	µg/l	<10	<10	
0.00	12,7,0-11101101001101		L	1	- -

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

....

TABLE 6.41 2003 SEMIANNUAL DATA MONITORING WELL, MW26

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	May	December	Mean	Max.	Min.	LIMIT
	pH	0-14	7.70	8.23	7.97	8.23	7.70	+
1S2	Temperature	°C	19.6	16.32	18.0	19.60	16.32	+
1S3	Dissolved Oxygen	mg/l		2.19	2.19	2.19	2.19	+
1S4	Electrical Conductivity	umhos/cm	344	309	327	344	309	1600
900	Depth to Groundwater	ft	311.25	315.94	313.60	311.25	311.25	1000
C15	Total Petroleum Hydrocarbons	μg/1	<60	<50	<55	<60	<50	
155	Total Dissolved Solids	mg/l	202	263	233	263	202	1000^{2}
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	1000
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	< 0.1	<u> </u>	<u> </u>
204	Nitrate	mg-N/l	2.68	5.53	4.11	5.53	2.68	10 ³
205	Nitrite	mg-N/l	<0.02	< 0.02	<0.02	< 0.02	<0.02	$\frac{10}{10^3}$
257	Sulfate	mg/l	25	32.9	29	32.9	25.0	500^{4}
301	Chloride	mg/l	26	12	19	26	12	500^{4}
315	MBAS	mg/l	<0.1	<0.1	<0.1	< 0.1	<u> </u>	0.50
405	Total Organic Carbon	μg/1	<500	1800	<1150	1800	<500	0.50
602	Chloroform	μg/l	<0.5	< 0.5	< 0.5	<0.5	<0.5	<u> </u>
608	Bromodichloromethane	μg/l	<0.5	< 0.5	<0.5	< 0.5	<0.5	
609	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<u> </u>
610	Bromoform	μg/l	<0.5	<0.5	< 0.5	< 0.5	<0.5	<u> </u>
723	Sodium	mg/l	14.2	13.8	14.0	14.2	13.8	┢─────

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.42 2003 ANNUAL DATA MONITORING WELL, MW26

TEST	MISCELLANEOUS PARAMETERS	UNIT	May	December	LIMIT
206	Total Cyanides	μg/1		<5	200
312	Total Phenols	μg/l	<50	<11	1
TEST	ANNUAL MRP (METALS)	UNIT	May	December	LIMIT
703	Calcium	mg/l	37.4	49.9	
704	Magnesium	mg/l	7.35	9.9	1
705	Arsenic	mg/l	< 0.001	< 0.001	0.05
706	Barium	mg/l	0.053	0.061	1
707	Aluminum	mg/l		< 0.05	1
708	Cadmium	mg/l		< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	< 0.01	0.05
711	Cobalt	mg/l		< 0.01	
_712	Copper	mg/l	<0.008	<0.008	1
713	Iron	mg/l	< 0.05	< 0.05	0.3
714	Lead	mg/l	< 0.002	< 0.002	
716	Manganese	mg/l		< 0.005	0.05
	Mercury	mg/l	<0.00004	<0.00004	0.002
718	Nickel	mg/l	< 0.02	< 0.02	0.1
719	Potassium	mg/l	1.6	<10	
720	Selenium	mg/l	< 0.001	< 0.001	0.05
722	Silver	mg/l	< 0.025	< 0.025	0.1
724	Zinc	mg/l	0.051	0.023	5
725	Antimony	mg/l	0.0005	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	< 0.0005	0.004
732	Molybdenum	mg/l		<0.04	
734	Thallium	mg/l	< 0.001	< 0.001	0.002
737	Vanadium	mg/l		< 0.02	

TABLE 6.42 2003 ANNUAL DATA MONITORING WELL, MW26

	PESTICIDES & PCBs	UNIT	December	LIMIT
	PP'-DDE	μg/l	<0.01	
	PP'-DDD	_µg/l	<0.01	
	PP'-DDT	_µg/l	<0.01	
	Alpha-BHC	_µg/l	<0.01	
	Lindane (Gamma-BHC)	μg/l	<0.01	0.2
510	Heptachlor	μg/l	<0.01	0.01
	Heptachlor Epoxide	_μg/l	<0.01	0.01
	Aldrin	_µg/l	<0.01	
	Dieldrin	_μg/l	<0.01	
	Endrin	μg/l	<0.01	2
	Toxaphene	μg/l	<0.5	3
	Aroclor 1242	μg/l	<0.1	
520	Aroclor 1254	μg/l	<0.05	
	Beta-BHC	μg/1	<0.01	
	Delta-BHC	μg/l	<0.01	
	Endosulfan I	μg/1	<0.01	
	Endosulfan II	μg/l	<0.01	
533	Endosulfan Sulfate	μg/l	<0.1	
534	Endrin Aldehyde	μg/l	<0.01	
535	Aroclor 1016	μg/l	<0.1	0.5
536	Aroclor 1221	μg/l	<0.1	0.5
537	Aroclor 1232	μg/l	<0.1	0.5
538	Aroclor 1248	μg/l	<0.1	0.5
	Aroclor 1260	μg/l	<0.1	0.5
540	Technical Chlordane	μg/l	<0.05	0.1
TEST	VOLATILE ORGANICS	UNIT	December	LIMIT
601	Methylene Chloride	μg/l	<0.5	
603	1,1,1-Trichloroethane	μg/l	<0.5	200
604	Carbon Tetrachloride	μg/l	<0.5	0.5
605	1,1-Dichloroethene	μg/l	<0.5	6
	Trichloroethylene	μg/l	<0.5	5
607	Tetrachloroethylene	μg/l	<0.5	5
611	Chlorobenzene	μg/l	<0.5	70
612	Vinyl Chloride	μg/l	<0.5	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l	<0.5	600
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	<0.5	
	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	<0.5	5
	1,1-Dichloroethane	μg/l	<0.5	5
618	1,1,2-Trichloroethane	<u>μg/l</u>	<0.5	5
	1,2-Dichloroethane	μg/l	<0.5	0.5
620	Benzene	μg/l	<0.5	1
	Toluene	μg/l	<0.5	150
	Ethyl Benzene	µg/l	<0.5	700
	Trans-1,2-Dichloroethylene	μg/l	<0.5	10
	Bromomethane	μg/l	<0.5	
	Chloroethane	μg/l	<0.5	
	2-Chloroethylvinylether	μg/l	<0.5	
	Chloromethane	μg/l	<0.5	
	1,2-Dichloropropane	μg/l	<0.5	5
	Cis-1,3-Dichloropropene	μg/l	<0.5	0.5
	Trans-1,3-Dichloropropene	μg/l	<0.5	0.5
653	1,1,2,2-Tetrachloroethane	μg/l	<0.5	1
	Acrolein	μg/l	<10	
1 034 1				
	Acrylonitrile	_µg/l	<5	

TABLE 6.42 2003 ANNUAL DATA MONITORING WELL, MW26

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT		December	LIMIT
	Acenaphthene	μg/l		<1	
	Acenaphthylene	μg/l		<10	
	Anthracene	μg/l		<10	
	Benzidine	μg/l		<5	
	Benzo(a)anthracene	μg/l		<5	
	Benzo(a)pyrene	μg/l		<0.02	0.2
	Benzo(b)fluoranthene	μg/l		< 0.02	
	1,12-Benzoperylene	μg/l		<5	
	Benzo(k)fluoranthene	μg/l		< 0.02	
	Bis(2-chloroethoxy)methane	μg/l		<5	
	Bis(2-Chloroethyl)ether	μg/l		<1	
	Bis(2-chloroisopropyl)ether	μg/l		<2	
	Bis(2-diethylhexyl)phthalate	μg/l		<2	4
	4-Bromophenyl Phenyl Ether	μg/l		<5	
	Butylbenzyl Phthalate	μg/l		<10	
	2-Chloronaphthalene	μg/l	I L	<10	
	4-Chlorophenyl Phenyl Ether	µg/l		<5	
	Chrysene	µg/l		< 0.02	ļ
818	1,2,5,6-Dibenzanthracene	μg/l		< 0.02	ļ
	1,2-Dichlorobenzene	μg/l		<2	
	1,3-Dichlorobenzene	μg/l		<1	
821	1,4-Dichlorobenzene	μg/l	l	<1	
	3,3'-Dichlorobenzidine	μg/l	l	<5	
823	Diethyl Phthalate	μg/l	1 L	<2	ļ
	Dimethyl Phthalate	μg/l	↓ ⊢	<2	
	Di-n-Butyl Phthalate	μg/l	↓ ⊢	<10	
	2,4-Dinitrotoluene	μg/l	┨ ┣	<5	
827	2,6-Dinitrotoluene	μg/l	↓ ⊢	<5	
	Di-n-Octyl Phthalate	μg/l	↓ ⊢	<10	
	1,2-Diphenylhydrazine	µg/l	↓ ⊢	<1	
	Fluoranthene	µg/l	↓ ⊢	<1	
	Fluorene	μg/l		<10	
	Hexachlorobenzene	μg/l		<1	1
	Hexachlorobutadiene	μ <u>g/l</u>	<u>ا</u> ا	<1	
	Hexachlorocyclopentadiene	μg/l	۹ <u>ا</u>	<5	50
	Hexachloroethane	μg/l	┨ ┣-	<1	
	Indeno(1,2,3-c,d)pyrene	μ <u>g/l</u>	┦ ┣-	<0.02	
	Isophorone	μg/l	┨ ┣	<1	ļ
	Naphthalene	μ <u>g/l</u>	۹ ا	<1	ļ
	Nitrobenzene	<u>μg/l</u>	┥ ┝-	<1	
	n-Nitrosodimethylamine	<u>μg/l</u>	┨ ┝-	<5	+
	n-Nitrosodi-n-propylamine	<u>μg/l</u>	┨ ┣-	<5	<u> </u>
	Phenanthrene	<u>μg/l</u>	┨ ┣	<u><5</u> <10	<u> </u>
	Pyrene	<u>μg/l</u>	┥ ┣	<0.0041	0.00003
	2,3,7,8-TCDD	<u>μg/l</u>	{		70
	1,2,4-Trichlorobenzene n-Nitrosodiphenylamine	μg/l μg/l	4 -	<u><5</u> <1	+ <u>/v</u>
			-	December	LIMIT
TEST	ACID EXTRACTIBLES		{ ⊢		
845	2-Chlorophenol	<u>μg/l</u>	┥ ┝	<5 <5	<u> </u>
	2,4-Dichlorophenol	<u>μg/l</u>	┥ ┝-		
	2,4-Dimethylphenol	μg/l	┥ ┝─	<u><2</u> <5	
	2,4-Dinitrophenol	<u>μg/l</u>	┥ ┝-	<5	ł
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	μg/l μg/l	4 F	<10	
	2-Nitrophenol		۹ F	<10	-
	4-Nitrophenol 4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	<u>μg/l</u> μg/l	1 F	<10	
		μg/I μg/l	┥ ┣-	<5	1
	Pentachlorophenol Phenol	μg/1 μg/l	┥ ┝-	<1	<u> </u>
855	2,4,6-Trichlorophenol	μg/1 μg/1	┨ ┣-	<10	
000		μ <u>μ</u> χ/1	<u>. </u>	<u> </u>	ı

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

. .

TABLE 6.43 2003 SEMIANNUAL DATA MONITORING WELL, MW27

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	May	December	Mean	Max.	Min.	LIMIT
	pH	0-14	7.86	7.46	7.66	7.86	7.46	<u> </u>
1S2	Temperature	°C	21.30	16.82	19.06	21.30	16.82	
1S3	Dissolved Oxygen	mg/l		1.8	1.8	1.8	1.8	
1S4	Electrical Conductivity	µmhos/cm	312	425	369	425	312	1600
900	Depth to Groundwater	ft	312.00	315.27	313.64	315.27	312.00	1000
C15	Total Petroleum Hydrocarbons	μg/l	<60	<50	<55	<60	<50	i
155	Total Dissolved Solids	mg/l	190	190	190	190	190	1000^{2}
201	Ammonia	mg-N/l	<0.1	< 0.1	<0.1	<0.1	<0.1	1000
203	Kjeldahl Nitrogen	mg-N/l	<0.1	< 0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	1.60	2.38	1.99	2.38	1.60	10 3
205	Nitrite	mg-N/l	<0.02	< 0.02	< 0.02	< 0.02	<0.02	10^{-10}
257	Sulfate	mg/l	25.0	22.9	24.0	25.0	22.9	500 4
301	Chloride	mg/l	10	2	6	10	2	500 ⁴
315	MBAS	mg/l	<0.1	< 0.1	< 0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	820	<660	820	<500	0.50
602	Chloroform	μg/l	<0.5	< 0.5	<0.5	<0.5	<0.5	
608	Bromodichloromethane	μg/l	<0.5	< 0.5	<0.5	< 0.5	< 0.5	
	Dibromochloromethane	μg/l	<0.5	< 0.5	<0.5	< 0.5	<0.5	
	Bromoform	μg/l	< 0.5	<0.5	< 0.5	< 0.5	<0.5	
723	Sodium	mg/l	15.3	14.3	14.8	15.3	14.3	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

.

TABLE 6.44 2003 ANNUAL DATA MONITORING WELL, MW27

TEST	MISCELLANEOUS PARAMETERS	UNIT	May	December	LIMIT
206	Total Cyanides	μg/l		<5	200
312	Total Phenols	μg/l	<50	<11	
TEST	METALS	UNIT	May	December	LIMIT
703	Calcium	mg/l	36.9	35.9	
704	Magnesium	mg/l	6.59	7	
705	Arsenic	mg/l	< 0.001	< 0.001	0.05
706	Barium	mg/l	0.052	0.052	1
707	Aluminum	mg/l		0.07	1
708	Cadmium	mg/l		< 0.0004	0.005
709	Total Chromium	mg/l	< 0.01	<0.01	0.05
711	Cobalt	mg/l		<0.01	
712	Copper	mg/l	<0.008	< 0.008	1
713	Iron	mg/l	0.366	0.063	0.3
714	Lead	mg/l	< 0.002	0.002	
716	Manganese	mg/l		0.063	0.05
717	Mercury	mg/l	< 0.00004	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	< 0.02	0.1
719	Potassium	mg/l	1.8	<10	
720	Selenium	_mg/l	< 0.001	< 0.001	0.05
722	Silver	mg/l	<0.025	< 0.025	0.1
724	Zinc	mg/l	0.049	0.022	5
725	Antimony	mg/l	0.0005	< 0.0005	0.006
726	Beryllium	mg/l	< 0.0005	< 0.0005	0.004
732	Molybdenum	mg/l		< 0.04	
734	Thallium	mg/l	<0.001	< 0.001	0.002
737	Vanadium	mg/l		< 0.02	

TABLE 6.44 2003 ANNUAL DATA MONITORING WELL, MW27

TEST	PESTICIDES & PCBs	UNIT		December	LIMIT
	PP'-DDE	ug/l		<0.01	
	PP'-DDD	μg/l		<0.01	
	PP'-DDT	μ <u>g/l</u>		<0.01	
	Alpha-BHC	μg/l		<0.01	
	Lindane (Gamma-BHC)	μg/l	l –	< 0.01	0.2
510	Heptachlor	μg/l	۰ ا -	<0.01	0.01
	Heptachlor Epoxide	μg/1	·	<0.01	0.01
	Aldrin Dieldrin	μg/l	۰ <u>۱</u>	<0.01 <0.01	-
	Endrin	μg/l	{ ⊢	<0.01	2
	Toxaphene	<u>μg/l</u> μg/l	{	<0.5	$\frac{2}{3}$
	Aroclor 1242	$\mu g/l$	┨ ┣	<0.1	<u> </u>
	Aroclor 1254	$-\frac{\mu g/l}{\mu g/l}$	┥ ┣━	<0.05	+
	Beta-BHC	μg/l	∮ <u>}</u>	<0.01	+
	Delta-BHC	μg/l	┥ ┣━━	<0.01	+
	Endosulfan I	μg/l	1	<0.01	
	Endosulfan II	μg/1	ا ا	<0.01	+
	Endosulfan Sulfate	μ <u>μ</u> μμ <u>μ</u> μ	1	<0.1	+1
	Endrin Aldehyde	$\mu g/l$	1 <u></u>	<0.01	+
	Aroclor 1016	μg/l	┫ ┣━━	<0.1	0.5
	Aroclor 1221	μg/1	1	<0.1	0.5
	Aroclor 1232	μg/l	1	<0.1	0.5
	Aroclor 1248	μg/l	1 P	<0.1	0.5
	Aroclor 1260	μg/l	1 -	<0.1	0.5
	Technical Chlordane	μg/l	1	< 0.05	0.1
TEST	VOLATILE ORGANICS	UNIT		December	LIMIT
601	Methylene Chloride	μg/l		<0.5	
603	1,1,1-Trichloroethane	μg/l		<0.5	200
	Carbon Tetrachloride	ug/l		<0.5	0.5
	1,1-Dichloroethene	μg/l		<0.5	6
	Trichloroethylene	μg/l	4	<0.5	5
	Tetrachloroethylene	μg/l	┥ ┝	<0.5	5
	Chlorobenzene	μg/l	4	<0.5	70
	Vinyl Chloride	μg/l	╡ ┣	<0.5	0.5
	o-Dichlorobenzene (1,2-Dichlorobenzene)	<u>µg/l</u>	┥ ┣━	<0.5	600
	m-Dichlorobenzene (1,3-Dichlorobenzene)	μ <u>g/l</u>		<0.5	
	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	┥ ┝─	<0.5	5
	1,1-Dichloroethane	μg/l	┫ ┝	<u><0.5</u> <0.5	5
	1,1,2-Trichloroethane	<u>ug/l</u>	┨ ┣━	<0.5	0.5
	1,2-Dichloroethane	<u>μg/l</u>	┥ ┝━	<0.5	1
	Benzene	μg/l	┥ ┝━━	<0.5	150
	Toluene	μg/I μg/l	┥ ┣━	<0.5	700
	Ethyl Benzene			<0.5	10
	Trans-1,2-Dichloroethylene	μg/l		<0.5	
	Bromomethane	μg/!	┥ ┣━━	<0.5	+
	Chloroethane	μg/1	┥ ┝━	<0.5	
	2-Chloroethylvinylether	μ <u>ε/1</u> μg/l	┥ .┝━	<0.5	1
	Chloromethane	μg/1	┥ ┣━	<0.5	5
	Cis-1,3-Dichloropropene	μg/1	┤ ┣━━	<0.5	0.5
			1 –	<0.5	0.5
	Trans-1 3-Dichloropropene	1 [[2/]			
652	Trans-1,3-Dichloropropene	μg/l μg/l	1	<0.5	1
652 653	1,1,2,2-Tetrachloroethane	μg/l			1
652 653 654				<0.5	1

TABLE 6.44 2003 ANNUAL DATA MONITORING WELL, MW27

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT		December	LIMIT
	Acenaphthene	μg/l	Γ	<1	
	Acenaphthylene	µg/l		<10	
	Anthracene	μg/l		<10	
	Benzidine	μg/l		<5	
	Benzo(a)anthracene	μg/l		<5	
805	Benzo(a)pyrene	μg/l		< 0.02	0.2
	Benzo(b)fluoranthene	μg/1		< 0.02	
	1,12-Benzoperylene	μg/l	E	<5	
	Benzo(k)fluoranthene	μg/l		< 0.02	
809	Bis(2-chloroethoxy)methane	μg/l		<5	
	Bis(2-Chloroethyl)ether	μg/l		<1	
	Bis(2-chloroisopropyl)ether	μg/l		<2	
812	Bis(2-diethylhexyl)phthalate	μg/l		<2	4
813	4-Bromophenyl Phenyl Ether	μg/l		<5	
	Butylbenzyl Phthalate	μg/1		<10	
815	2-Chloronaphthalene	μg/l		<10	
816	4-Chlorophenyl Phenyl Ether	μg/l	l [<5	
817	Chrysene	μg/l		< 0.02	
	1,2,5,6-Dibenzanthracene	μg/l	ļ Ī	< 0.02	
819	1,2-Dichlorobenzene	μg/l	j ľ	<2	
	1,3-Dichlorobenzene	μg/l	l ľ	<1	
	1,4-Dichlorobenzene	µg/l		<1	
	3,3'-Dichlorobenzidine	μg/l		<5	
	Diethyl Phthalate	μg/l		<2	
	Dimethyl Phthalate	μg/l		<2	
	Di-n-Butyl Phthalate	μg/l	1	<10	
	2,4-Dinitrotoluene	μg/l	1 1	<5	1
	2,6-Dinitrotoluene	µg/l		<5	
	Di-n-Octyl Phthalate	μg/l		<10	
	1,2-Diphenylhydrazine	μg/l	1	<1	
	Fluoranthene	μg/l	1 1	<1	
	Fluorene	μg/1	1 1	<10	
	Hexachlorobenzene	µg/l	1 1	<1	1
	Hexachlorobutadiene	μg/l	[<1	
	Hexachlorocyclopentadiene	μg/l	1 [<5	50
	Hexachloroethane	μg/1	1	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	1 1	< 0.02	
	Isophorone	μg/l	1	<1	
	Naphthalene	μg/l	1 1	<1	
	Nitrobenzene	<u>μg/l</u>	1 1	<1	
	n-Nitrosodimethylamine	μg/l	1 1	<5	
	n-Nitrosodi-n-propylamine	με/!	1 1	<5	
-	Phenanthrene	μ <u>g</u> /l	1 1	<5	
	Pyrene	μg/l	1 1	<10	
	2,3,7,8-TCDD	μg/l	1 1	< 0.003	0.00003
846	1,2,4-Trichlorobenzene	ug/l	1 1	<5	70
	n-Nitrosodiphenylamine	μg/l	1 1	<1	1 1
TEST		UNIT		December	LIMIT
845	2-Chlorophenol	µg/l	1 1	<5	
	2,4-Dichlorophenol	ug/l	1 1	<5	
	2,4-Dimethylphenol	μg/l	1 1	<2	
	2,4-Dinitrophenol	μg/l	1 1	<5	
850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	$\mu g/l$	1 1	<5	
	2-Nitrophenol	$\mu g/l$	1 1	<10	1
	4-Nitrophenol	μg/l	1 1	<10	
853	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	μg/l	1 1	<1	_
	Pentachlorophenol	$\mu g/l$	1 1	<5	1
	Phenol	μg/1	1 1	<1	
	2,4,6-Trichlorophenol	μg/1	1 1	<10	
630		με/1	J	.10	

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

in e

TABLE 6.45 2003 SEMIANNUAL DATA **MONITORING WELL, MW28**

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	June	December	Mean	Max.	Min.	LIMIT
151	pH	0-14	7.46	7.85	7.66	7.85	7.46	
1S2	Temperature	°C	13.21	19.57	16.39	19.57	13.21	
1S3	Dissolved Oxygen	mg/l	1.87	7.19	4.53	7.19	1.87	
1S4	Electrical Conductivity	µmhos/cm	420	474	447	474	420	1600 ¹
900	Depth to Groundwater	ft	324.46	303.45	313.96	324.46	303.45	
C15	Total Petroleum Hydrocarbons	μg/l	<60		<60	<60	<60	
155	Total Dissolved Solids	mg/l	269		269	269	269	1000 ²
201	Ammonia	mg-N/l	<0.1		<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1		<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	5.54		5.54	5.54	5.54	10 ³
205	Nitrite	mg-N/l	< 0.02		<0.02	< 0.02	< 0.02	10 ³
257	Sulfate	mg/l	40		40	40	40	500 ⁴
301	Chloride	mg/l	41		41	41	41	500 ⁴
315	MBAS	mg/l	<0.1		<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	590		590	590	590	
602	Chloroform	μg/l	<0.5		<0.5	< 0.5	< 0.5	
608	Bromodichloromethane	μg/l	<0.5		<0.5	< 0.5	<0.5	
	Dibromochloromethane	μg/l	<0.5		<0.5	< 0.5	<0.5	
610	Bromoform	μg/l	<0.5		<0.5	< 0.5	<0.5	
723	Sodium	mg/l	25.1		25.1	25.1	25.1	

¹ 900 recommended / 1600 upper / 2200 short term ² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.46 2003 ANNUAL DATA MONITORING WELL, MW28

TEST	MISCELLANEOUS	UNIT	June		LIMIT
206	Total Cyanides	μg/l	<5		200
312	Total Phenols	μg/l	<11		
TEST	METALS	UNIT	June	December	LIMIT
703	Calcium	mg/l	58.9		
704	Magnesium	mg/l	8.33		
705	Arsenic	mg/1	< 0.001		0.05
706	Barium	mg/l	0.09		1
707	Aluminum	mg/l		0.12	1
708	Cadmium	mg/l	< 0.0004		0.005
709	Total Chromium	mg/l	< 0.01		0.05
711	Cobalt	mg/l		< 0.01	
712	Copper	mg/l	<0.008		1
713	Iron	mg/l	5.99	0.11	0.3
714	Lead	mg/l	0.002		
716	Manganese	mg/l	0.095	0.008	0.05
717	Mercury	mg/l	< 0.00004		0.002
718	Nickel	mg/1	< 0.02		0.1
719	Potassium	mg/l	3.4		
720	Selenium	mg/l	< 0.001		0.05
722	Silver	mg/l	< 0.025		0.1
724	Zinc	mg/l	0.06		5
725	Antimony	mg/l	0.0006		0.006
726	Beryllium	mg/l	< 0.0005		0.004
732	Molybdenum	mg/l		< 0.04	
734	Thallium	mg/l	< 0.001		0.002
737	Vanadium	mg/l		< 0.02	

· · · · ·

.

TABLE 6.46 2003 ANNUAL DATA MONITORING WELL, MW28

TEST	PESTICIDES & PCBs	UNIT	June		LIMIT
	PP'-DDE	μg/l	< 0.01	-	
	PP'-DDD	μg/l	< 0.01		
	PP'-DDT	μg/l	< 0.01	1	
508	Alpha-BHC	μg/l	< 0.01	-	
509	Lindane (Gamma-BHC)	μg/l	< 0.01	-	0.2
	Heptachlor	μg/l	< 0.01		0.01
	Heptachlor Epoxide	μg/l	< 0.01		0.01
	Aldrin	μg/l	< 0.01		
513	Dieldrin	μg/l	< 0.01		
514	Endrin	μg/1	< 0.01	1	2
515	Toxaphene	μg/l	< 0.5	1	3
519	Aroclor 1242	μg/l	<0.1	-	
520	Aroclor 1254	μg/l	< 0.05	-	
523	Beta-BHC	μg/l	< 0.01	1	
524	Delta-BHC	$\mu g/l$	<0.01	4	
531	Endosulfan I	μg/l	<0.01	4	
532	Endosulfan II	μg/l	<0.01	-	
533	Endosulfan Sulfate	μg/1	<0.01	-	
534	Endrin Aldehyde	μg/1	<0.01	-	
535	Aroclor 1016			4	
536	Aroclor 1221	<u>μg/l</u>	<0.1	-	0.5
537	Aroclor 1232	μg/l	<0.1	4	0.5
	Aroclor 1232	<u>μg/l</u>	<0.1	4	0.5
		μg/l	<0.1	4	0.5
540	Aroclor 1260	μg/l	<0.1	-	0.5
540	Technical Chlordane	μg/l	<0.05		0.1
TEST	VOLATILE ORGANICS	UNIT	June		LIMIT
601	Methylene Chloride	μg/l	< 0.5		
	1,1,1-Trichloroethane	μg/1	<0.5		200
604	Carbon Tetrachloride	μg/l	< 0.5		0.5
	1,1-Dichloroethene	μg/l	<0.5		6
606	Trichloroethylene	μg/l	< 0.5]	5
	Tetrachloroethylene	μg/ł	<0.5		5
611	Chlorobenzene	μg/l	< 0.5		70
612	Vinyl Chloride	μg/l	< 0.5]	0.5
613	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l	< 0.5		600
614	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l	< 0.5		
615	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l	< 0.5		5
616	1,1-Dichloroethane	μg/l	< 0.5		5
618	1,1,2-Trichloroethane	μg/l	< 0.5		5
619	1,2-Dichloroethane	μg/l	< 0.5		0.5
	Benzene	μg/l	< 0.5	1	1
621	Toluene	μg/1	<0.5	1	150
	Ethyl Benzene	μg/l	< 0.5	1	700
	Trans-1,2-Dichloroethylene	μg/l	< 0.5	1	10
646	Bromomethane	μg/l	< 0.5	1	<u> </u>
647	Chloroethane	μg/l	<0.5	1	
648	2-Chloroethylvinylether	μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	<0.5	1	<u>├</u> ───┤
	Chloromethane	μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	<0.5	1	
650	1,2-Dichloropropane	μg/l	<0.5	1	5
651	Cis-1,3-Dichloropropene	μ <u>g</u> /l	<0.5	1	0.5
652	Trans-1,3-Dichloropropene	μg/l	<0.5	1	0.5
	1,1,2,2-Tetrachloroethane	μg/l	<0.5	1	1
654	Acrolein	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμ <u>μ</u> μμμ	<2	4	
655	Acrylonitrile	μ <u>g</u> /l	<2	4	├ {
	Methyl Tertiary Butyl Ether		<0.5	4	├─── ┤
002	Interny Freithary Buryr Ether	μg/l		<u> </u>	L]

TABLE 6.46 2003 ANNUAL DATA MONITORING WELL, MW28

806Benzo(b/lucranthene $\mu g/l$ <10	TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT	June		LIMIT
801 Accmaphthylene $\mu g/l$ <10		Acenaphthene	μg/l	<1		
803Benzidine $ _{2} _{1} _{2} _{$		Acenaphthylene	μg/l	<10		
804 Benzo(a)pyrene μ_0/l <5			μg/l	<10		
895 Benzo(a)pyrene $\mu g/l$ <10			μg/l			
806 Benzo(b)fluoranthene $\mu g/l$ <10			μg/l	<5		
8071.12-Benzoperviene $\mu g/l$ <5808Benza(k)fluoranthene $\mu g/l$ <10			μg/l			0.2
808Benzok/sfluoranthene $\mu g/l$ <10809Bis(2-chloroethoxy)methane $\mu g/l$ <5			μg/l	<10		
800Bis(2-chlorosethoxy)methane $\mu g/l$ <5810Bis(2-Chlorosethy)lether $\mu g/l$ <1			µg/l	<5		
810 Bis(2-Chloroschyl)ether $\mu g/l$ <1			µg/l			
811 Bis(2-chicroisopropy)/ether $\mu g/l$ <2			μg/l	<5		
812 Bis(2-diethylhexyl)phthalate $\mu g/l$ <5			μg/l	<1		
813 4-Bromophenyl Phenyl Ether $\mu g/l$ <5						
814 Butylbenzyl Phthalate $\mu g/l$ <10			μg/l	<5		4
8152-Chloronaphthalene $\mu g/l$ <108164-Chlorophenyl Phenyl Ether $\mu g/l$ <10		4-Bromophenyl Phenyl Ether	μg/l	<5		
8164-Chlorophenyl Phenyl Ether $\mu g/l$ <5817Chrysene $\mu g/l$ <10		Butylbenzyl Phthalate	μg/l	<10		
817 Chrvsene $\mu g/l$ <10			μg/l	<10		
8181.2.5.6-Dibenzanthracene $\mu g/l$ <108191.2.Dichlorobenzene $\mu g/l$ <2		4-Chlorophenyl Phenyl Ether	μg/l			
8191.2-Dichlorobenzene $\mu g/l$ <28201.3-Dichlorobenzene $\mu g/l$ <1			µg/l	<10		
8191.2-Dichlorobenzene $\mu g/l$ <28201.3-Dichlorobenzene $\mu g/l$ <1	818	1,2,5,6-Dibenzanthracene	μg/l	<10		
820 1.3-Dichlorobenzene $\mu g/l$ <1	819	1,2-Dichlorobenzene		<2		
822 3.3'-Dichlorobenzidine $\mu g/l$ <5		1,3-Dichlorobenzene		<1		
823Diethyl Phthalate $\mu g/l$ <2 824Dimethyl Phthalate $\mu g/l$ <2 825Din-Butyl Phthalate $\mu g/l$ <10 826 $2,4$ -Dinitrotoluene $\mu g/l$ <5 827 $2,6$ -Dinitrotoluene $\mu g/l$ <5 828Di-n-Octyl Phthalate $\mu g/l$ <1 830Fluoranthene $\mu g/l$ <1 831Fluoranthene $\mu g/l$ <1 832Hexachlorobenzene $\mu g/l$ <1 833Hexachlorobenzene $\mu g/l$ <1 834Hexachlorobenzene $\mu g/l$ <1 835Hexachlorobenzene $\mu g/l$ <1 836Indeno(1, 2, 3-c, d) pyrene $\mu g/l$ <1 837Isophorone $\mu g/l$ <1 840n-Nitrosodimethylamine $\mu g/l$ <1 841Phenanthrene $\mu g/l$ <5 843Pyrene $\mu g/l$ <5 844Pyrene $\mu g/l$ <5 843Pyrene $\mu g/l$ <5 844Pyrene $\mu g/l$ <5 843Pyrene $\mu g/l$ <5 844Pyrene $\mu g/l$ <5 845Pyrene $\mu g/l$ <5 8461,2,4-Trichlorobenzene $\mu g/l$ <5 8472,4-Dichlorophenol $\mu g/l$ <5 8482,4-Dimetrylphenol $\mu g/l$ <5 8482,4-Dinethylphenol $\mu g/l$ <5 8482,4-Dinitrophenol μ	821	1,4-Dichlorobenzene	μg/l	<1		
824 Dimethyl Phthalate $\mu g/l$ <2	822	3,3'-Dichlorobenzidine		<5		
824Dimethyl Phthalate $\mu g/l$ <2825Di-n-Butyl Phthalate $\mu g/l$ <10	823	Diethyl Phthalate	µg/l	<2		
825 Di-n-Butyl Phthalate $\mu g/l$ <10	824	Dimethyl Phthalate		<2		
826 2.4 -Dinitrotoluene $\mu g/l$ <5 827 2.6 -Dinitrotoluene $\mu g/l$ <10 828 Di-n-Octyl Phthalate $\mu g/l$ <10 829 1.2 -Diphenylhydrazine $\mu g/l$ <1 830 Fluoranthene $\mu g/l$ <1 831 Fluorene $\mu g/l$ <1 833 Hexachlorobenzene $\mu g/l$ <1 834 Hexachlorobutadiene $\mu g/l$ <1 835 Hexachlorocyclopentadiene $\mu g/l$ <1 836 Indeno(1,2,3-c,d)pyrene $\mu g/l$ <1 837 Isophorone $\mu g/l$ <1 840 n-Nitrosodimethylamine $\mu g/l$ <1 844 n-Nitrosodinethylamine $\mu g/l$ <5 842 Phenanthrene $\mu g/l$ <5 844 $2.3.7.8-TCDD$ $\mu g/l$ <5 843 Pyrene $\mu g/l$ <5 844 $2.3.7.8-TCDD$ $\mu g/l$ <5 847 2.4 -Dichlorobenzene $\mu g/l$ <5 847 2.4 -Dichlorobenzene $\mu g/l$ <5 847 2.4 -Dichlorobenol $\mu g/l$ <5 847 2.4 -Dichlorophenol $\mu g/l$ <5 847 2.4 -Dichlorophenol $\mu g/l$ <5 847 2.4 -Dichlorophenol $\mu g/l$ <5 848 2.4 -Dinitrophenol $\mu g/l$ <5 848 2.4 -Dinitrophenol $\mu g/l$ <5 848 2.4 -Dinitrophenol $\mu g/l$ <t< td=""><td>825</td><td>Di-n-Butyl Phthalate</td><td></td><td><10</td><td></td><td></td></t<>	825	Di-n-Butyl Phthalate		<10		
8272,6-Dinitrotoluene $\mu g/l$ <5828Di-n-Octyl Phthalate $\mu g/l$ <10	826	2,4-Dinitrotoluene		<5		
828Di-n-Octyl Phthalate $\mu g/l$ <108291,2-Diphenylhydrazine $\mu g/l$ <1			μg/l	<5		
830 Fluoranthene $\mu g/l$ <1	828	Di-n-Octyl Phthalate		<10		
831Fluorene $\mu g/l$ <10832Hexachlorobenzene $\mu g/l$ <1	829	1,2-Diphenylhydrazine	μg/l	<		
831Fluorene $\mu g/l$ <10832Hexachlorobenzene $\mu g/l$ <1	830	Fluoranthene	μg/l	<1		
832Hexachlorobenzene $\mu g/l$ <1833Hexachlorobutadiene $\mu g/l$ <1	831	Fluorene		<10		
834Hexachlorocyclopentadiene $\mu g/l$ <5835Hexachloroethane $\mu g/l$ <1	832	Hexachlorobenzene		<1	•	1
835 Hexachloroethane $\mu g/l$ <1	833	Hexachlorobutadiene	μg/l	<1		
836 Indeno(1,2,3-c,d)pyrene $\mu g/l$ <10	834	Hexachlorocyclopentadiene	μg/l	<5		50
837Isophorone $\mu g/l$ <1838Naphthalene $\mu g/l$ <1	835	Hexachloroethane	μg/l	<1		
838Naphthalene $\mu g/l$ <1839Nitrobenzene $\mu g/l$ <1	836	Indeno(1,2,3-c,d)pyrene	μg/l	<10		
839Nitrobenzene $\mu g/l$ <1840n-Nitrosodimethylamine $\mu g/l$ <5	837	Isophorone	μg/l	<1		
840n-Nitrosodimethylamine $\mu g/l$ <5841n-Nitrosodi-n-propylamine $\mu g/l$ <5	838	Naphthalene	μg/l	<1		
841 n-Nitrosodi-n-propylamine $\mu g/l$ <5	839	Nitrobenzene	μg/l	<1		
842 Phenanthrene $\mu g/l$ <5	840	n-Nitrosodimethylamine	μg/l	<5		10 C
843 Pyrene $\mu g/l$ <10	841	n-Nitrosodi-n-propylamine	μg/l	<5		
844 $2,3,7,8$ -TCDD $\mu g/l$ <0.000047	842	Phenanthrene	μg/l	<5		
8461,2,4-Trichlorobenzene $\mu g/l$ <5857n-Nitrosodiphenylamine $\mu g/l$ <1	843	Pyrene	μg/l	<10		
8461,2,4-Trichlorobenzene $\mu g/l$ <5857n-Nitrosodiphenylamine $\mu g/l$ <1	844	2,3,7,8-TCDD	μg/l	< 0.000047		0.00003
857n-Nitrosodiphenylamineμg/l<1TESTACID EXTRACTIBLESUNITJune8452-Chlorophenolμg/l<5				<5		70
TESTACID EXTRACTIBLESUNITJune8452-Chlorophenolµg/l<5						
8472,4-Dichlorophenol $\mu g/l$ <58482,4-Dimethylphenol $\mu g/l$ <2				June		LIMIT
8472,4-Dichlorophenol $\mu g/l$ <58482,4-Dimethylphenol $\mu g/l$ <2			μg/l	<5		
8482,4-Dimethylphenol $\mu g/l$ <28492,4-Dinitrophenol $\mu g/l$ <5	847	2,4-Dichlorophenol	μg/l	<5		
8492,4-Dinitrophenolμg/l<58502-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)μg/l<5				<2		
850 2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol) µg/l <5	849	2,4-Dinitrophenol				
851 2-Nitrophenol ug/l <10	850	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)				
		2-Nitrophenol	µg/l	<10		
852 4-Nitrophenol $\mu g/l$ <10				<10		
853 4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol) μg/l <1						
854 Pentachlorophenol µg/l <5				<5		1
855 Phenol μg/l <1						
856 2.4,6-Trichlorophenol $\mu g/l$ <10				<10		

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.472003 SEMIANNUAL DATAMONITORING WELL, MW29

TEST	SEMIANNUAL MRP PARAMETERS	UNIT	May	December	Mean	Max.	Min.	LIMIT
1S1	pH	0-14	8.02	8.27	8.15	8.27	8.02	
1S2	Temperature	°C	23.50	20.57	22.04	23.50	20.57	
1S3	Dissolved Oxygen	mg/l		5.62	5.62	5.62	5.62	1
1S4	Electrical Conductivity	µmhos/cm	232	216	224	232	216	1600 ¹
900	Depth to Groundwater	ft	319.60	301.00	310.30	319.60	301.00	
C15	Total Petroleum Hydrocarbons	μg/l	<60	<50	<55	<60	<50	
155	Total Dissolved Solids	mg/l	150	147	149	150	147	1000 ²
201	Ammonia	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
203	Kjeldahl Nitrogen	mg-N/l	<0.1	<0.1	<0.1	<0.1	<0.1	
204	Nitrate	mg-N/l	0.34	0.35	0.35	0.35	0.34	10 ³
205	Nitrite	mg-N/l	< 0.02	<0.02	<0.02	< 0.02	< 0.02	10 ³
257	Sulfate	mg/l	19	21	20	21	19	500 ⁴
301	Chloride	mg/l	4	28	16	28	4	500 ⁴
315	MBAS	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.50
405	Total Organic Carbon	μg/l	<500	660	<580	660	<500	
602	Chloroform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
	Bromodichloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
	Dibromochloromethane	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
	Bromoform	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	
723	Sodium	mg/l	21.7	21.3	21.5	21.7	21.3	

¹ 900 recommended / 1600 upper / 2200 short term

² 500 recommended / 1000 upper / 1500 short term

³ Nitrate+Nitrite = 10

TABLE 6.48 2003 ANNUAL DATA MONITORING WELL, MW29

TEST	MISCELLANEOUS PARAMETERS	UNIT	May	December	LIMIT
206	Total Cyanides	μg/1		<5	200
312	Total Phenols	μg/1	<12	<11	
TEST	METALS	UNIT	May	December	LIMIT
703	Calcium	mg/l	28.6	25.5	
704	Magnesium	mg/l	6.07	2.3	
705	Arsenic	mg/l	< 0.001	< 0.001	0.05
706	Barium	mg/l	0.109	0.033	1
707	Aluminum	mg/l		1.49	1
708	Cadmium	mg/l		< 0.0004	0.005
709	Total Chromium	mg/l	0.017	<0.01	0.05
711	Cobalt	mg/l		< 0.01	
712	Copper	mg/l	0.014	< 0.008	1
713	Iron	mg/l	12.5	1.36	0.3
714	Lead	mg/l	0.005	< 0.002	
716	Manganese	mg/l		0.076	0.05
717	Mercury	mg/l	< 0.00004	< 0.00004	0.002
718	Nickel	mg/l	< 0.02	< 0.02	0.1
719	Potassium	mg/l	3.6	<10	
720	Selenium	mg/l	< 0.001	< 0.001	0.05
722	Silver	mg/l	< 0.025	< 0.025	0.1
724	Zinc	mg/l	0.077	0.021	5
725	Antimony	mg/l	0.0006	< 0.0005	0.006
726	Beryllium	mg/l	0.0005	< 0.0005	0.004
732	Molybdenum	mg/l		< 0.04	
734	Thallium	mg/l	< 0.001	< 0.001	0.002
737	Vanadium	mg/l		< 0.02	

TABLE 6.48 2003 ANNUAL DATA MONITORING WELL, MW29

TEST	PESTICIDES & PCBs	UNIT	Dec	ember	LIMIT
	PP'-DDE	μg/l		0.01	
	PP'-DDD	μg/l		0.01	
	PP'-DDT	μg/l		0.01	
	Alpha-BHC	μg/l] <(0.01	
509	Lindane (Gamma-BHC)	μg/l		0.01	0.2
_510	Heptachlor	μg/l		0.01	0.01
	Heptachlor Epoxide	μg/l		0.01	0.01
	Aldrin	μg/l] [<(0.01	
	Dieldrin	μg/l	<	0.01	
	Endrin	μg/l		0.01	2
	Toxaphene	μg/l	<	0.5	3
	Aroclor 1242	μg/l		0.1	
	Aroclor 1254	μg/l	<	0.05	
	Beta-BHC	μg/l		0.01	
	Delta-BHC	μg/l] <(0.01	
	Endosulfan I	μg/l		0.01	
	Endosulfan II	μg/l		0.01	
	Endosulfan Sulfate	μg/l] _ <	0.1	
	Endrin Aldehyde	μg/l).01	
	Aroclor 1016	μg/l] – – – – – – – – – – – – – – – – – – –	0.1	0.5
	Aroclor 1221	μg/l	<	0.1	0.5
537	Aroclor 1232	μg/l		0.1	0.5
538	Aroclor 1248	μg/l		0.1	0.5
539	Aroclor 1260	μg/l		0.1	0.5
540	Technical Chlordane	μg/l).05	0.1
TEST	VOLATILE ORGANICS	UNIT	Dec	ember	LIMIT
601	Methylene Chloride	µg/l		0.5	
	1,1,1-Trichloroethane	μg/l] <	0.5	200
	Carbon Tetrachloride	μg/l		0.5	0.5
	1,1-Dichloroethene	ug/l		0.5	6
	Trichloroethylene	µg/l		0.5	5
	Tetrachloroethylene	μg/l		0.5	5
	Chlorobenzene	μg/l		0.5	70
	Vinyl Chloride	μg/l		0.5	0.5
	o-Dichlorobenzene (1,2-Dichlorobenzene)	μg/l		0.5	600
	m-Dichlorobenzene (1,3-Dichlorobenzene)	μg/l		0.5	
	p-Dichlorobenzene (1,4-Dichlorobenzene)	μg/l		0.5	5
	1,1-Dichloroethane	ug/l		0.5	5
	1,1,2-Trichloroethane	µg/l		0.5	5
	1,2-Dichloroethane	μg/l		0.5	0.5
	Benzene	ug/l		0.5	1
	Toluene	ug/l		0.5	150
	Ethyl Benzene	ug/l		0.5	700
	Trans-1,2-Dichloroethylene	µg/l		0.5	10
	Bromomethane	ug/l		0.5	
647	Chloroethane	µg/l		0.5	
648	2-Chloroethylvinylether	μ <u>g/l</u>		0.5	
	Chloromethane	μg/1		0.5	
	1,2-Dichloropropane	μ <u>g/l</u>		0.5	5
651	Cis-1,3-Dichloropropene	μg/]	4	0.5	0.5
	Trans-1,3-Dichloropropene	μg/l		0.5	0.5
	1,1,2,2-Tetrachloroethane	μg/l		0.5	i
	Acrolein	μg/l		(10	
655	Acrylonitrile Methyl Tertiary Butyl Ether	μg/l μg/l		<5 0.5	

TABLE 6.48 2003 ANNUAL DATA MONITORING WELL, MW29

TEST	BASE/NEUTRAL EXTRACTIBLES	UNIT
	Acenaphthene	μg/l
	Acenaphthylene	μg/l
	Anthracene	μg/l
	Benzidine	μg/l
	Benzo(a)anthracene	μg/l
805	Benzo(a)pyrene	μg/l
806	Benzo(b)fluoranthene	μg/l
807	1,12-Benzoperylene	μg/l
	Benzo(k)fluoranthene	μg/l
809	Bis(2-chloroethoxy)methane	μg/l
810	Bis(2-Chloroethyl)ether	μg/l
	Bis(2-chloroisopropyl)ether	μ <u>g/l</u>
	Bis(2-diethylhexyl)phthalate	μg/l
	4-Bromophenyl Phenyl Ether	μg/1
	Butylbenzyl Phthalate	
		<u>μg/l</u>
	2-Chloronaphthalene	μ <u>g/l</u>
	4-Chlorophenyl Phenyl Ether	μ <u>g/l</u>
	Chrysene	μg/l
	1,2,5,6-Dibenzanthracene	µg/l
	1,2-Dichlorobenzene	μg/l
	1,3-Dichlorobenzene	μg/l
	1,4-Dichlorobenzene	μg/l
822	3,3'-Dichlorobenzidine	μg/l
	Diethyl Phthalate	μg/l
	Dimethyl Phthalate	μg/l
	Di-n-Butyl Phthalate	μg/l
	2,4-Dinitrotoluene	μg/l
	2,6-Dinitrotoluene	<u>μg/1</u> μg/l
	Di-n-Octyl Phthalate	μg/I μg/I
820	1,2-Diphenylhydrazine	
		μg/l
	Fluoranthene	μ <u>g/l</u>
	Fluorene	μg/l
	Hexachlorobenzene	μg/l
	Hexachlorobutadiene	µg/l
	Hexachlorocyclopentadiene	μg/l
	Hexachloroethane	ug/l
	Indeno(1,2,3-c,d)pyrene	μg/l
	Isophorone	μg/l
	Naphthalene	μg/l
	Nitrobenzene	μg/l
	n-Nitrosodimethylamine	$\mu g/l$
	n-Nitrosodi-n-propylamine	μg/]
842	Phenanthrene	μ <u>g/]</u> μg/]
	Pyrene	μg/l
0.4.4		17
	2,3,7,8-TCDD	<u>μg/l</u>
	1,2,4-Trichlorobenzene	μg/]
857	n-Nitrosodiphenylamine	μ <u>g/</u>]
TEST	ACID EXTRACTIBLES	UNIT
845	2-Chlorophenol	μg/l
	2,4-Dichlorophenol	μg/l
	2.4-Dimethylphenol	μg/l
	2,4-Dinitrophenol	μg/l
	2-Methyl-4,6-Dinitrophenol (p-Chloro-m-Cresol)	$\mu g/l$
	2-Methyl-4,6-Dimtrophenol (p-Chloro-In-Cresor)	<u>μg/1</u> μg/l
	4-Nitrophenol	μ <u>g/</u>]
	4-Chloro-3-Methylphenol (4,6-Dinitro-o-Cresol)	<u>μg/l</u>
	Pentachlorophenol	μg/l
	Phenol	<u>μg/</u>]
856	2,4,6-Trichlorophenol	μg/l

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

TABLE 6.49PALMDALE WATER RECLAMATION PLANT2003 LYSIMETER MONITORING DATA

	LVSI	METER LY	1			
TEST	CONSTITUENT	UNIT	JAN	MARCH	MAY	JUNE
155	Total Dissolved Solids	mg/l			1803	
201	Ammonia	mg-N/l	< 0.1			
203	Kjeldahl Nitrogen	mg-N/l	<0.1			
204	Nitrate	mg-N/l	32.2			
205	Nitrite	mg-N/l	< 0.02			
257	Sulfate	mg/l			527	
301	Chloride	mg/l			251	
315	MBAS	mg/l				
723	Sodium	mg/l				
TECT		METER LY UNIT		MADCH	MAY	TUNE
TEST	CONSTITUENT Total Dissolved Solids		JAN	MARCH	MAY	JUNE 1323
155	Ammonia	mg/l mg-N/l		<0.1		1323
201		mg-N/l		1.1		
203	Kjeldahl Nitrogen	mg-N/l		27.7		
204	Nitrate Nitrite	mg-N/l		<0.02		
	Sulfate	mg/l		~0.02	271	
257					235	
<u>301</u> 315	Chloride MBAS	mg/l mg/l			233	<0.1
723	Sodium	mg/l mg/l				
123		METER LY	/ 4	I		
TEST	CONSTITUENT	UNIT	JAN	MARCH	MAY	JUNE
155	Total Dissolved Solids	mg/l		852		
201	Ammonia	mg-N/l	<0.1			
203	Kjeldahl Nitrogen	mg-N/l	<0.1			
203	Nitrate	mg-N/l	39			
205	Nitrite	mg-N/l	0.034			
257	Sulfate	mg/l		27		
301	Chloride	mg/l		147		
315	MBAS	mg/l		<0.1		
723	Sodium	mg/l			52.9	
125	Bouldin					and the second se
	LYS	IMETER LY	/6			
TEST	CONSTITUENT	IMETER LY UNIT	76 JAN	MARCH	MAY	JUNE
TEST 155	CONSTITUENT			MARCH 1033	MAY	JUNE
		UNIT mg/l mg-N/l		1033 <0.1	MAY	JUNE
155	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen	UNIT mg/l mg-N/l mg-N/l	JAN	1033	ΜΑΥ	JUNE
155 201	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate	UNIT mg/l mg-N/l mg-N/l	JAN 49.5	1033 <0.1	МАҮ	JUNE
155 201 203 204 205	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite	UNIT mg/l mg-N/l mg-N/l mg-N/l	JAN	1033 <0.1 0.1	ΜΑΥ	JUNE
155 201 203 204	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate	UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l	JAN 49.5	1033 <0.1 0.1	ΜΑΥ	
155 201 203 204 205 257 301	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l	JAN 49.5	1033 <0.1 0.1	ΜΑΥ	
155 201 203 204 205 257 301 315	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l	JAN 49.5	1033 <0.1 0.1	ΜΑΥ	JUNE
155 201 203 204 205 257 301	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l	JAN 49.5 <0.02	1033 <0.1 0.1	MAY	
155 201 203 204 205 257 301 315 723	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l IMETER L	JAN 49.5 <0.02	1033 <0.1 0.1 138 170		<0.1
155 201 203 204 205 257 301 315 723 TEST	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l IMETER L UNIT	JAN 49.5 <0.02	1033 <0.1 0.1 138 170 MARCH	MAY	
155 201 203 204 205 257 301 315 723 TEST 155	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l	JAN 49.5 <0.02 X8 JAN	1033 <0.1 0.1 138 170		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg/l unIT	JAN 49.5 <0.02 X8 JAN <0.1	1033 <0.1 0.1 138 170 MARCH		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg/l ung/l	JAN 49.5 <0.02 X8 JAN <0.1 <0.1	1033 <0.1 0.1 138 170 MARCH		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg/l UNIT mg/l mg-N/l mg-N/l	JAN 49.5 <0.02 X8 JAN <0.1 <0.1 23.9	1033 <0.1 0.1 138 170 MARCH		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate	UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l	JAN 49.5 <0.02 X8 JAN <0.1 <0.1	1033 <0.1 0.1 138 170 MARCH 850		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l	JAN 49.5 <0.02 X8 JAN <0.1 <0.1 23.9	1033 <0.1 0.1 138 170 MARCH 850		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate Nitrate Colastication	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l	JAN 49.5 <0.02 X8 JAN <0.1 <0.1 23.9	1033 <0.1 0.1 138 170 MARCH 850 118 159		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L ^V UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg/l mg/l	JAN 49.5 <0.02 X8 JAN <0.1 <0.1 23.9	1033 <0.1 0.1 138 170 MARCH 850		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l	JAN 49.5 <0.02 Y8 JAN <0.1 <0.1 23.9 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159		<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l	JAN 49.5 <0.02 Y8 JAN <0.1 <0.1 23.9 <0.02 //16	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1		<0.1
155 201 203 204 205 257 301 315 723 TEST 203 204 203 204 205 257 301 315 723 TEST	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER LY UNIT mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l	JAN 49.5 <0.02 Y8 JAN <0.1 <0.1 23.9 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159	MAY	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 203 204 205 257 301 315 723 TEST 155	CONSTITUENT Total Dissolved Solids Ammonia Kieldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYS CONSTITUENT Total Dissolved Solids	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER LY UNIT mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	JAN 49.5 <0.02 Y8 JAN <0.1 <0.1 23.9 <0.02 //16	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 315 723	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia LYS	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l IMETER LY UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02 Y8 JAN <0.1 <0.1 23.9 <0.02 //16	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 203	CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen LYS	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER LY UNIT mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 205 257 301 315 723 TEST 155 201 203 204	CONSTITUENT Total Dissolved Solids Ammonia Kieldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER L UNIT mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02 Y8 JAN <0.1 <0.1 23.9 <0.02 //16	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205	CONSTITUENT Total Dissolved Solids Ammonia Kieldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYSI CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER LY UNIT mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 205 257 301 315 723 TEST 155 201 203 204 205 201 203 204 205 207	CONSTITUENT Total Dissolved Solids Ammonia Kieldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Sulfate	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER LY UNIT mg/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY MAY 859	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 203 TEST 155 201 203 204 205 257 301	CONSTITUENT Total Dissolved Solids Ammonia Kieldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYSI CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrite Sulfate Chloride	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l IMETER LY UNIT mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1	MAY MAY 859	<0.1
155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 257 301 315 723 TEST 155 201 203 204 205 201 203 204 205 257	CONSTITUENT Total Dissolved Solids Ammonia Kieldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrite Sulfate Chloride MBAS Sodium LYS CONSTITUENT Total Dissolved Solids MBAS Sodium LYSI CONSTITUENT Total Dissolved Solids Ammonia Kjeldahl Nitrogen Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Sulfate	UNIT mg/l mg-N/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg-N/l mg-N/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg	JAN 49.5 <0.02	1033 <0.1 0.1 138 170 MARCH 850 118 159 <0.1 MARCH	MAY MAY 859 134 156	<0.1

PALMDALE WATER RECLAMATION PLANT

FIGURES 6.1 - 6.70

GRAPHICAL SUMMARIES

EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER

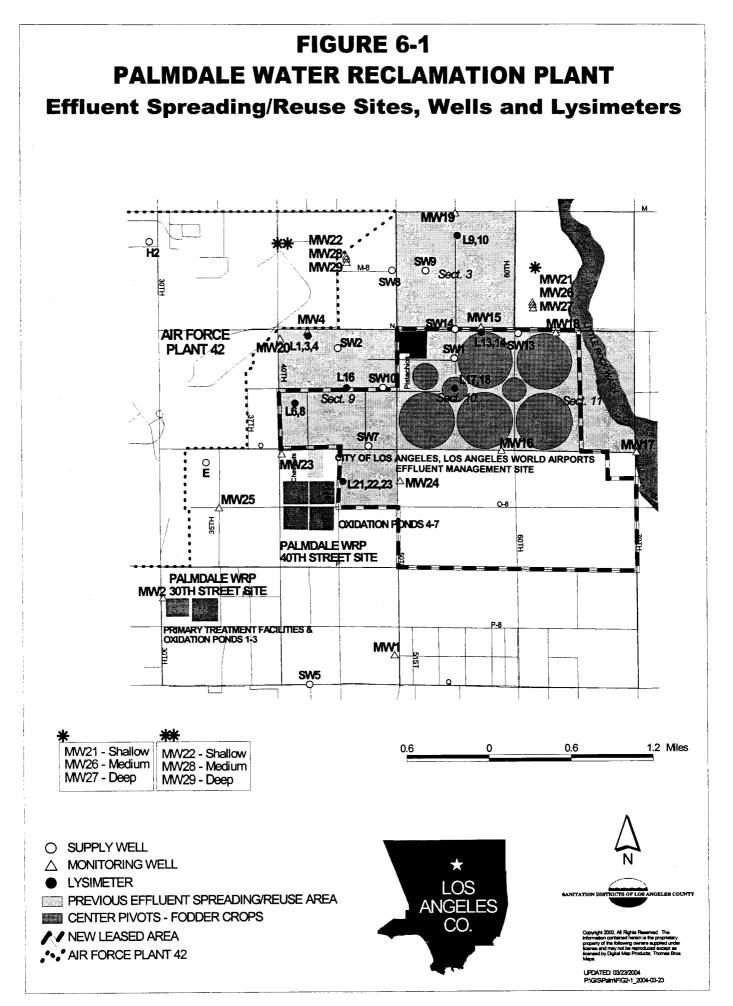


EXHIBIT I-4 TO CITY OF LOS ANGELES' RESPONSE TO DISCOVERY ORDER